

## PUBLIC SERVICE COMPANY OF COLORADO 2021 ERP & CEP TRANSMISSION SYSTEM IMPACT STUDY FOR THE APPROVED PORTFOLIO

Xcel Energy - Transmission Planning October 11, 2024



#### CONTENTS

| I.   | Executive Summary                                                            | 4  |
|------|------------------------------------------------------------------------------|----|
| II.  | Background                                                                   | 9  |
| Α.   | Purpose and Objective of the Transmission Network Improvement Projects Study | 9  |
| В.   | 2021 Electric Resource Plan and Clean Energy Plan                            | 10 |
| C.   | Transmission Challenges in and Around the Denver Metro Area                  | 13 |
| D.   | Stakeholder Engagement & Acknowledgments                                     | 14 |
| III. | Transmission Network Improvement Projects                                    | 16 |
| A.   | Detailed Project Descriptions and Alternatives                               | 18 |
| 1    | . Daniels Park Path Upgrades                                                 | 18 |
| 2    | 2. Smoky Hill Path Upgrades                                                  | 24 |
| 3    | Cherokee Area Upgrades                                                       | 28 |
| В.   | Comparison to Previous Study Results & Looking to the Future                 | 31 |
| 1    | . Additional Studies                                                         | 31 |
| 2    | Differences from the 2021 ERP & CEP 120-Day Report Transmission Analysis     | 32 |
| IV.  | Transmission Planning Study Process                                          | 34 |
| A.   | Study Assumptions                                                            | 34 |
| 1    | . Generation Assumptions                                                     | 34 |
| 2    | Planning Criteria                                                            | 35 |
| 3    | . Software                                                                   | 35 |
| 4    | Study Case Loads                                                             | 35 |
| 5    | . Network Topology & Planned Projects                                        | 36 |
| В.   | Power Flow Case Development                                                  | 37 |
| 1    | . Generation Dispatch                                                        | 37 |
| 2    | 2. Stress Dispatch Scenarios                                                 | 38 |
| 3    | . Future Generation Scenarios                                                | 39 |
| C.   | Project Selection Process                                                    | 41 |
| D.   | Advanced Transmission Technologies                                           | 43 |
| 1    | . Energy Storage                                                             | 43 |
| 2    | 2. Transmission Topology Optimization                                        | 43 |
| 3    | B. Dynamic Line Rating                                                       | 44 |



| 4  | 4. | Advanced Transmission Conductors      | 44 |
|----|----|---------------------------------------|----|
| ļ  | 5. | Advanced Power Flow Control           | 44 |
| (  | 6. | Supplemental Alternatives Evaluated   | 45 |
| E. | Ρ  | roject Design                         | 46 |
|    | 1. | Feasibility & Risk                    | 46 |
| 2  | 2. | Project Schedule and In-Service Dates | 46 |
| ;  | 3. | Cost Estimates                        | 47 |

## List of Appendices

| Appendix A | Approved Portfolio                                           |
|------------|--------------------------------------------------------------|
| Appendix B | Pre and Post Thermal Overloads Under Contingency 2025 – 2028 |
| Appendix C | Denver Metro Voltages 2025- 2028                             |
| Appendix D | PSCo FERC FORM 715 Filing                                    |
| Appendix E | TPL-001 WECC-CRT                                             |



## I. EXECUTIVE SUMMARY

Following the Colorado Public Utilities Commission's ("Commission") approval of Public Service Company of Colorado's ("Public Service" or the "Company") historic 2021 Electric Resource Plan and Clean Energy Plan (the "2021 ERP & CEP"), the Company's transmission planning team has conducted detailed technical analysis to identify the transmission system improvements that will be needed to deliver the 2021 ERP & CEP's Approved Portfolio to Public Service's customers.

This Transmission Planning Study Report ("Report" or "Study Report") memorializes the technical studies the Company has conducted to date, and also identifies a portfolio of Transmission Network Improvement Projects ("Projects") that are needed to reliably accommodate the Approved Portfolio and deliver it to Public Service's customers. The Company's top priorities remain ensuring it can safely and reliably deliver electric power to its customers. The Approved Portfolio of generation resources by itself cannot do so and meet the State's emission reduction goals without the necessary changes to the transmission system.

In conducting this Study, the Company's overarching objectives were to: (1) evaluate impacts to the existing transmission network in light of the new generation approved as part of the 2021 ERP & CEP; and, (2) determine both the overall operational feasibility, from a transmission perspective, of the Approved Portfolio and, where applicable, identify transmission system improvements needed to ensure generation can be delivered to Public Service's system under varying system conditions while meeting customer demand and ensuring reliability, and (3) seek to ensure Projects are right sized for the future to minimize the need for further incremental upgrades to the facilities identified in this Study Report where possible. These objectives remain as the needs of the transmission system continue to be reviewed.

As the Company indicated in its 2021 ERP & CEP, there are numerous challenges to interconnecting a portfolio the size of that approved in the 2021 ERP & CEP. In studying what transmission infrastructure is needed to reliably deliver the Approved Portfolio, one overarching challenge is the scale and location of new renewable generation sited in remote areas of the State. The Company's transmission system was not originally designed to accommodate this.

Many complexities exist in the transmission system in the Denver Metro area due to the concentrated amount of load in and around Denver. As increasing amounts of power are imported into the Denver Metro area versus generated within the Denver Metro area, energy largely moves onto the Company's higher voltage 230 kilovolt ("kV") system under normal system operations<sup>1</sup>. The interconnectivity of the Denver Metro system increases the reliability and resilience of the transmission system as a whole, but also increases the vulnerability of various elements to overloads, thus requiring new solutions and enhancements.

Through this Study Report, the Company's Transmission Planning team has identified a necessary portfolio of Transmission Network Improvement Projects, each geographically targeting one of three critical arteries that feed power into the Denver Metro area: (1) the Daniels Park Path Upgrades, (2) the Smoky Hill Path Upgrades, and (3) the Cherokee Area Upgrades. These Projects have been designed to reliably address system needs of the Approved Portfolio

<sup>&</sup>lt;sup>1</sup> The Company's Denver Metro area is largely made up of 115kV and 230kV systems. Unplanned outages on the higher voltage system can cause flows to shift to underlying interconnected lower voltage system.



and are needed to ensure future deliverability in many operational scenarios. The Projects are shown on a map in Figure 1 and listed in more detail in Table 1 below.

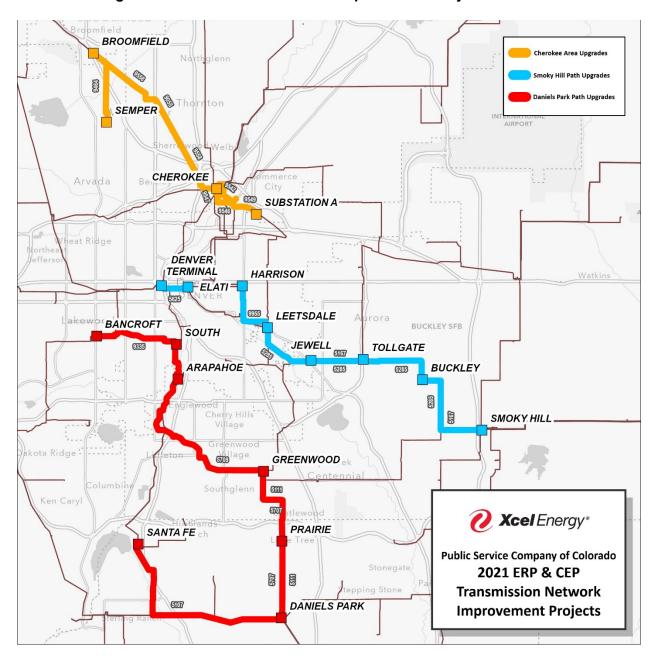



Figure 1 – Transmission Network Improvement Projects Portfolio

| Project Element                                                      | Planned Upgrade                                                                          |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| Daniels Park Path Upgrades                                           |                                                                                          |  |
| Daniels Park Substation                                              | Add fourth 345/230 kV transformer                                                        |  |
| Circuits 5111 and 5707: Daniels Park -<br>Prairie - Greenwood        | Uprate by reconductoring existing 230 kV circuits                                        |  |
| Greenwood Substation                                                 | Uprate 230 kV bus tie breaker                                                            |  |
| Circuit 5717: Greenwood - Monaco Series<br>Reactor                   | Add series reactor on Greenwood - Monaco<br>circuit, located in the Greenwood Substation |  |
| Circuit 5709: Greenwood – Arapahoe                                   | Uprate by reconductoring existing 230 kV circuit                                         |  |
| Arapahoe Substation                                                  | Uprate 115 kV bus tie breaker                                                            |  |
|                                                                      | Add second 230/115 kV Transformer                                                        |  |
| Circuit 9335: Arapahoe - South Tap -<br>Bancroft                     | Uprate by reconductoring existing 115 kV circuit                                         |  |
| Circuit 9332: Arapahoe - Air Liquide Tap -<br>South - Gray Street    | Uprate by reconductoring existing 115 kV circuit                                         |  |
| South Substation                                                     | Expand substation to add new 230 kV Yard<br>with 230/115 kV transformer                  |  |
| Circuit 5107: Daniels Park - Santa Fe                                | Uprate by reconductoring existing 230 kV circuit                                         |  |
| Smoky Hill P                                                         | ath Upgrades                                                                             |  |
| Smoky Hill Substation                                                | Add new 345/230 kV transformer                                                           |  |
| Smoky Hill - Buckley Circuit 5167                                    | Uprate by reconductoring existing 230 kV circuit                                         |  |
| Smoky Hill - Buckley - Tollgate - Jewell -<br>Leetsdale Circuit 5285 | Uprate by reconductoring existing 230 kV circuit                                         |  |
| Denver Terminal - Elati Circuit 5625                                 | Uprate by reconductoring existing 230 kV circuit                                         |  |
| Leetsdale - Harrison Circuit 9955                                    | Uprate by reconductoring existing 115 kV circuit                                         |  |

## Table 1 – Components of the Transmission Network Improvement Projects

| Cherokee Area Upgrades                                                                                   |                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| New Substation A                                                                                         | Construct a new 115 kV substation tying<br>Circuits 9542, 9546, and 9549                                                                     |  |
| New Transmission Line Cherokee - New<br>Substation A                                                     | Construct a new 115 kV transmission line<br>from the new 115 kV substation to the north<br>115 kV bus in the Cherokee Substation             |  |
| Circuit 9542: Cherokee to New Substation A                                                               | Uprate by reconductoring/ rebuilding existing<br>115 kV circuit from the in-and-out at the new<br>115 kV Substation to Cherokee              |  |
| Cherokee to Mapleton to New 115 kV<br>Substation Circuit 9546: Cherokee –<br>Mapleton – New Substation A | Uprate by reconductoring/ rebuilding existing<br>115 kV circuit from the in-and-out at the new<br>115 kV Substation to Mapleton and Cherokee |  |
| Circuit 9549: Cherokee – Conoco – New<br>Substation A                                                    | Uprate by reconductoring/ rebuilding existing<br>115 kV circuit from the new 115 kV<br>Substation to Conoco South                            |  |
| Circuits 9055, 9558, and 9464: Cherokee –<br>Federal Heights – Semper – Broomfield                       | Uprate by reconductoring existing 115 kV circuit                                                                                             |  |

# Table 1 - Components of the Transmission Network Improvement Projects Continued

The Daniels Park Path is located in the southern Denver Metro area while the Smoky Hill Path is located in the eastern Denver Metro area. These two paths together share in the principal duty of delivering remote generation from Energy Resource Zones established in the Colorado SB07-100 into the Denver Metro area. The power flow cases reveal that the Daniels Park and Smoky Hill paths serve considerable load and are highly utilized throughout the various high-renewable dispatch scenarios which occur due to changes in our generation mix. The upgrades along those paths are designed to maximize the existing system's capabilities - first, by removing limiting elements from substations to allow existing transmission facilities to be used to their fullest capabilities, and second, by increasing line ratings through reconductoring or use of alternative technologies. The Cherokee Area Upgrades deliver generation throughout the Denver Metro and serves this dense, high-demand area *via* 115kV and 230kV networks.

The Company is proposing one greenfield transmission substation and one new 115 kV transmission line segment as part of the Transmission Network Improvement Projects, otherwise all system upgrades will take place in and around existing corridors and facilities, which will maximize the capability of the Company's existing transmission system. This approach is beneficial in that it mitigates the need for acquiring large swaths of additive land now. However, this will present challenges in that the work will largely occur in densely populated and congested areas and given the mechanical limitations of electrical equipment in these critical areas, additional capacity cannot realistically be gained in the future without significant construction upgrades to these transmission paths.

The Company's comprehensive analysis of the Projects considered factors such as feasibility, alignment with long-term goals, cost-effectiveness, and community impacts. Recognizing the challenges of developing new transmission in and around the Denver Metro area, the Company



has also sought to leverage new technologies and materials that will cost-effectively maximize the capability of the Company's existing transmission network.

The Company's Transmission Planning team will continue to study the 2021 ERP & CEP resource portfolio and bring forward to the Commission any additional transmission needs, such as voltage control, reactive support, and interconnection facilities that it identified are needed to reliably support the Approved Portfolio.

ERP PHASE II TRANSMISSION STUDY



## II. BACKGROUND

#### A. PURPOSE AND OBJECTIVE OF THE TRANSMISSION NETWORK IMPROVEMENT PROJECTS STUDY

The purpose of this transmission planning study is to: (1) evaluate impacts to the existing transmission network in light of the new generation approved as part of the 2021 ERP & CEP; and, (2) determine both the overall operational feasibility, from a transmission perspective, of the Approved Portfolio and, where applicable, identify transmission system improvements needed to ensure generation can be delivered to Public Service's system under varying system conditions while meeting customer demand and ensuring reliability.

As part of the transmission planning study process, the Company's Transmission Planning organization analyzed the addition of more than 5.5 GW (nameplate) of additional generation selected as part of the Approved Portfolio. The focus of this analysis was to identify the transmission upgrades and improvements that will enable the Company to safely and reliably integrate the Approved Portfolio generation into the transmission system in accordance with NERC standards and Western Electricity Coordinating Council ("WECC") criteria. Additionally, through this process, the Company evaluated sensitivities to identify unique transmission limitations that may arise due to different generation dispatch assumptions. Finally, the study process thoroughly vetted transmission mitigations to ensure adequate near term and long-term mitigation of identified transmission violations.

The Company conducted this study based on the following key objectives:

- Develop a portfolio of transmission solutions that will accommodate generation resources from the Approved Portfolio in order to meet the overarching goals of the CEP; and
- Develop and maintain a robust transmission system that meets near-term and long-term transmission system needs which continues to ensure safe and reliable transmission service.
- Maximize the opportunities presented by both the Inflation Reduction Act of 2022 ("IRA") and Colorado's Power Pathway Project ("Pathway Project"). Bringing \$10 billion in IRA benefits to customers, \$14 billion in energy investment to Colorado, and \$2.5 billion in tax benefits alone to local communities in the coming decades.

The transmission planning study was performed by Public Service's Transmission Planning team, and the initial results were presented to interested stakeholders vis-a-vis the Company's Local Transmission Planning Process as outlined in the Company's Tariff, Attachment R.

## B. 2021 ELECTRIC RESOURCE PLAN AND CLEAN ENERGY PLAN

In March of 2021, Public Service filed its 2021 ERP & CEP with the Colorado Public Utilities Commission ("Commission") in Proceeding No. 21A-0141E. The purpose of the 2021 ERP & CEP was to plan for the resource needs to serve Public Service's customers and to retire existing coal-fired generation while acquiring the generation resources needed to achieve an 80 percent reduction in carbon emissions by 2030 consistent with Colorado Senate Bill ("SB") 19-236.

Prior to filing the 2021 ERP & CEP, the Company also filed an application requesting a Certificate of Public Convenience and Necessity ("CPCN") for the Colorado's Power Pathway Project ("Pathway Project"), a 550-mile, 345 kV transmission backbone that will connect Front Range load centers to renewable resource rich areas in northeastern, eastern, and southeastern Colorado (Proceeding No. 21A-0096E). In June 2022, the Commission issued a CPCN for the Pathway Project, which is currently under construction with in-service dates of various Segments ranging between 2025 and 2027.

As part of the 2021 ERP & CEP, Public Service conducted its 2022 All-Source Request for Proposals to acquire generation resources between 2025 and 2028. Public Service received more than 1,000 competitive bids for generation resources, and in September 2023, the Company filed its 120-Day Report ("2021 ERP & CEP 120-Day Report") proposing a Preferred Portfolio of generation resources to be acquired to serve Public Service's customers.

In its 2021 ERP & CEP 120-Day Report, Public Service evaluated and identified additional investments potentially needed to support the Company's transmission network in order to deliver the energy generated by the Preferred Portfolio to customers. The Company identified several categories of investments, including: network upgrades in the Denver Metro Area and the San Luis Valley; grid strength reinforcement; and, reactive/voltage support. The Company's Phase II Transmission Report (Appendix Q to the 2021 ERP & CEP 120-Day Report)<sup>2</sup> presented a portfolio of transmission projects tailored to the Preferred Portfolio; however, the Company noted that it would need to engage in more detailed studies around the final, approved portfolio, as well as its Federal Energy Regulatory Commission ("FERC")-governed Open Access Transmission Tariff ("OATT") coordinated transmission planning process, to identify final transmission needs.

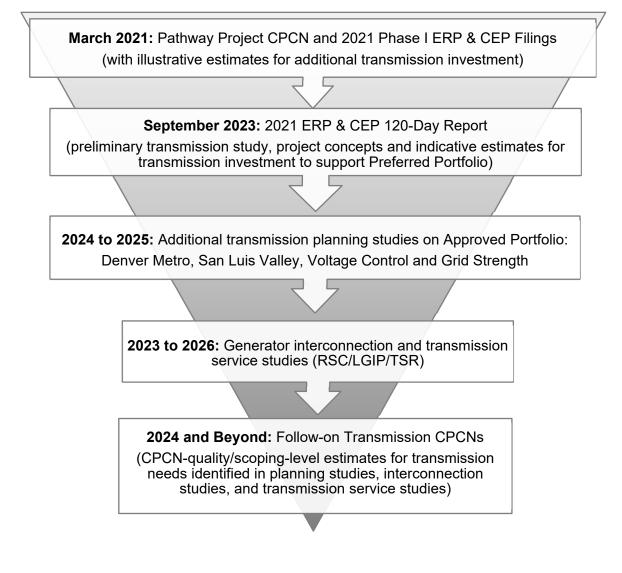
On January 23, 2024, the Commission approved a modified resource portfolio through Decision No. C24-0052 (*i.e.*, the "Approved Portfolio"). In March of 2024 Transmission Planning was notified of some minor changes to the bidders in the approved portfolio. As the case building efforts were still underway and to be as accurate as possible, these changes were applied to the study cases. The Approved Portfolio consists of approximately 1,720 MW of solar, 1,848 MW of energy storage (including both stand-alone and paired with solar resources), 2,053 MW of wind, and 450 MW of natural gas generation plants and leverages federal clean energy incentives included in the Inflation Reduction Act of 2022 ("IRA"), which will bring billions of dollars in benefits to Public Service's customers and support the clean energy transition. The 2021 ERP & CEP will fundamentally transition Public Service's generation fleet by phasing out coal generation resources by the end of 2030.

The Approved Portfolio consists of 20 generation projects with varying levels of nameplate capacity, points of interconnection, and fuel type. Much of the generation in the Approved Portfolio

<sup>&</sup>lt;sup>2</sup> <u>https://www.xcelenergy.com/staticfiles/xe-</u>

responsive/Company/Rates%20&%20Regulations/PUBLIC%20Appendix%20Q%20-%20Transmission%20Report.pdf




is located in remote areas of Colorado, with a significant amount interconnecting to the Pathway Project. The total nameplate of generation capacity which includes co-located energy storage of the Approved Portfolio is 6,071 MW. More detailed information about the Approved Portfolio studied in this Report is included in Appendix A.

By this Study Report, the Company puts forward the Transmission Network Improvement Projects, an updated 2021 ERP & CEP transmission plan for the Denver Metro area that is tailored to the Approved Portfolio. Public Service acknowledges generation resource projects that will ultimately develop to serve load have changed, and in fact continue to change, since Decision No. C24-0052. The Company cannot wait for all of those issues to be resolved as some may not be identified or known for potentially years into the future. Public Service must move forward with identified transmission projects due to the significant length of time it requires to execute a transmission project, including obtaining siting, permitting, material acquisition, execution, and commissioning. Additionally, the Company's analysis has indicated that moving forward with this portfolio presents a "no regrets" approach as it does not anticipate fundamental changes to the conclusions of the transmission planning process and study presented here despite on-going generation portfolio dynamics.

Figure 2 below provides a high-level diagram reflecting where the Company is in the process of studying and gaining approval for the transmission portfolio needed to support its 2021 ERP & CEP.







#### C. TRANSMISSION CHALLENGES IN AND AROUND THE DENVER METRO AREA

The Company's top priorities remain ensuring it can safely and reliably deliver electric power to its customers. The Approved Generation Portfolio by itself cannot do so and meet the State's emission reduction goals without the necessary changes to the transmission system. In studying what transmission infrastructure is needed to accomplish these various objectives, there are several unique and overarching challenges that the Company must navigate.

An overarching challenge is that generation type (intermittent renewable), scale (number of MWs), and location in remote areas must meet load in the Denver Metro area. As the type, scale and location of electric generation sources continues to expand outside the Denver Metro area, the transmission system will experience significant changes in its power flows that the Company's transmission system – particularly in the Denver Metro area – was not designed to accommodate.

Another challenge is the complexity of the transmission system within the Denver Metro area. As power is imported into the Denver Metro area, energy largely moves onto the Company's higher voltage 230 kilovolt ("kV") system under normal system operations and then moves to numerous interconnected substations and additive transmission lines and then distribution lines at varying voltages. The interconnectivity of the Denver Metro system increases the reliability and resilience of the transmission system as a whole, but also increases the vulnerability of various elements to overloads.

Compounding this complexity is the continued population and commercial/industrial growth in and around the Denver Metro area, which is only expected to continue. This growth creates challenges for developing the infrastructure necessary to serve the customers of today and tomorrow. While the Company has focused its efforts on developing a transmission portfolio that largely leverages existing infrastructure, land is becoming scarcer and property costs are increasing. Conducting work in highly congested areas presents challenges from a constructability standpoint, including outage coordination, permitting challenges, public and stakeholder concerns, noise and magnetic field issues, substations that were not originally constructed with significant room for expansion, and staging challenges.

Regulatory, siting, permitting, and land use processes only compound these challenges. In recent years, the Company has been pressed to file more CPCNs, and for projects it historically would not have filed CPCNs for. Moreover, urban and suburban developments have encroached on areas where many of the Company's existing assets are located, with this density making it more difficult to do work within or around existing electric infrastructure. This is contributing to increased public opposition to new work, and heightened public demands from the Company when executing new work and seeking local permits. Primary authority over siting and permitting is not within the Commission's primary jurisdiction, but instead governed by a patchwork of local, state, and federal entities and agencies, which can complicate and extend the amount of time needed to develop, gain approval for, and construct new transmission projects. The Company must increasingly grapple with questions like when to pursue land rights if it does not yet have a CPCN, whether and when to order materials and supply with long-lead times if it does not yet have a CPCN, and when to commence local siting and permitting processes if it does not yet have a CPCN. As the state undergoes its energy transition, the Company must obtain more permits and land rights than ever before, often negotiating with landowners and local jurisdictions that are not always aligned with the State's clean energy goals, and communities that have increasing demands from the utility in exchange for obtaining the necessary approvals, permits, and land rights. These challenges, coupled with recent macroeconomic and supply chain issues, mean

that transmission projects, including new lines, upgrades, substations, and even work "within the fence" is taking longer, and becoming more costly and complex.

## D. STAKEHOLDER ENGAGEMENT & ACKNOWLEDGMENTS

In conducting its study process, the Company followed Public Service's transmission planning process as outlined in Attachment R to the Company's OATT. Public Service held an initial stakeholder meeting on February 15, 2024 to review the Approved Portfolio and finalize the draft study plan. The draft study plan was sent to stakeholders on February 2, 2024 along with the meeting notice. A second meeting was held on May 30, 2024 to review study results and the Company's Conceptual transmission plan. All meeting materials and notes can be found on the Company's OASIS webpage.

The transmission planning study was performed by Public Service's Transmission Planning team, and the initial results were presented to interested stakeholders *vis-a-vis* the Company's Local Transmission Planning Process.

Stakeholder meetings were held in person and virtually *via* Microsoft Teams link that included participation from a wide variety of stakeholders. The following stakeholders attended at least one meeting based on the Company's attendance records:

- Tri-State Generation & 
   Transmission Association
   Administration
- City of Aspen
- Guzman Energy
- CORE
- EP Electric
- Apex Clean Energy
- Grid Reliability LLC
- Colorado Springs Utilities
- Pattern Energy
- SWCA Environmental Consultants
- AYPA Power
- HDR Inc.
- Galehead Development
- Black Hills Energy
- TRC Companies
- K.R. Saline & Associates: Energy Consultants

- Administration
- Applied Energy Services
- PacifiCorp
- NMPP Energy
- Ulteig
- Yampa Valley Electric Association •
- RWE
- Outshine Energy
- Platte River Power Authority
- Public Service Company of New Mexico
- Kaplan Kirsch
- Dietze & Davis
- Kinetic Power Co.
- National Grid Renewables
- Southwestern Power
- Colorado Electric Transmission Authority

- Holy Cross
- Invenergy
- NextEra Energy
- Gridliance
- NATRS
- Energy Strategies
- Connect Gen LLC
- Enel
- APS
- Innergex
- Col
- New Law Group
- Innergex
- BuckyBall System



Modeling data updates on future system topology changes, load forecasts, and generation forecasts, were requested from the participants above. The following entities provided updates on some or all of these categories, which were applied to the models used in this study. To the extent that the modeling data updates provided by these entities impacted transmission system needs within the scope of this Study Report, those needs are reflected within the results presented here.

- Black Hills Energy
- Colorado Springs Utilities
- Platte
- River Power Authority
- Tri-State Generation & Transmission Association
- Western Area Power Administration

## III. TRANSMISSION NETWORK IMPROVEMENT PROJECTS

In this Study Report, the Company identifies the Transmission Network Improvement Projects ("Project" or "Projects") needed to support generation acquired in the Company's 2021 ERP & CEP. The Projects consists of upgrades to three key network paths within the Denver Metro area that will serve as the predominant arteries to deliver the CEP's renewable generation from southern and eastern Colorado to the bulk of the Company's customers located within the Denver Metro area. The three Transmission Network Improvement Projects include: (1) the Daniels Park Path Upgrades, (2) the Smoky Hill Path Upgrades, and (3) the Cherokee Area Upgrades. The Daniels Park Path is located in the southern Denver Metro area while the Smoky Hill Path is located in the eastern Denver Metro area. These two paths together share in the principal duty of delivering remote generation into the Denver Metro area. The power flow cases reveal that the Daniels Park and Smoky Hill paths serve considerable load and are highly utilized throughout the various high-renewable dispatch scenarios which occur due to changes in our generation mix. The upgrades along those paths are designed to maximize the existing system's capabilities first, by removing limiting elements from substations to allow existing transmission facilities to be used to their fullest capabilities, and second, by increasing line ratings through reconductoring or use of alternative technologies. The Cherokee Area Upgrades deliver generation throughout the Denver Metro and serves this dense, high-demand area via 115kV and 230kV networks.

The Company is proposing one greenfield transmission substation and one new 115 kV transmission line segment as part of the Transmission Network Improvement Projects, otherwise all system upgrades will take place in and around existing corridors and facilities, which will maximize the capability of the Company's existing transmission system. This approach is beneficial in that it mitigates the need for acquiring large swaths of additive land now. However, this will present challenges in that the work will largely occur in densely populated and congested areas and given the mechanical limitations of electrical equipment in these critical areas, additional capacity cannot realistically be gained in the future without significant construction upgrades to these transmission paths. The Company's comprehensive analysis of the Projects considered factors such as feasibility, alignment with long-term goals, cost-effectiveness, and community impacts. Recognizing the challenges of developing new transmission in and around the Denver Metro area, the Company has also sought to leverage new technologies and materials that will cost-effectively maximize the capability of the Company's existing transmission network. Figure 3 below provides a visual overview of the Transmission Network Improvement Projects.



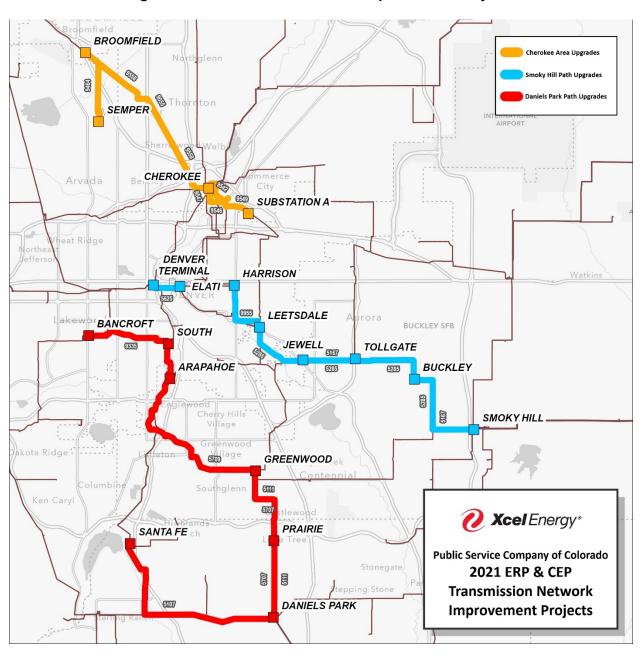



Figure 3 – Transmission Network Improvement Projects



#### A. DETAILED PROJECT DESCRIPTIONS AND ALTERNATIVES

Below, we provide a detailed description of each of the three components of the Transmission Network Improvement Projects: (1) the Daniels Park Path Upgrades, (2) the Smoky Hill Path Upgrades, and (3) the Cherokee Area Upgrades.

#### 1. DANIELS PARK PATH UPGRADES

Daniels Park has been and continues to be one of the main injection points from the 345 kV transmission system in the Denver Metro area. From a Transmission Planning perspective, Daniels Park is also referred to as the southern metro transmission constraint. The Approved Portfolio will significantly increase flows across the southern metro transmission constraint, further exacerbating this constraint on the transmission system.

Through the upgrades identified in Table 2 below, the Company will increase the capabilities of the existing transmission paths that move power from southern Colorado to Public Service customers via the Daniels Park Substation.

| Project Element                                                      | Planned Upgrade                                                                                | Existing<br>Rating            | New<br>Rating |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------|---------------|
| Daniels Park Substation                                              | Add fourth 345/230 kV transformer                                                              | N/A                           | 560 MVA       |
| Circuits 5111 and 5707:<br>Daniels Park - Prairie -<br>Greenwood     | Uprate by reconductoring existing 230 kV circuits                                              | 5111: ≈1434 A<br>5707: 1200 A | 2300 A        |
| Greenwood Substation                                                 | Uprate 230 kV bus tie breaker                                                                  | ≈1215 A                       | 2400 A        |
| Circuit 5717: Greenwood -<br>Monaco Series Reactor                   | Add series reactor on<br>Greenwood - Monaco circuit,<br>located in the Greenwood<br>Substation | N/A                           | N/A           |
| Circuit 5709: Greenwood –<br>Arapahoe                                | Uprate by reconductoring existing 230 kV circuit                                               | 1440 A                        | 2400 A        |
| Arapahoe Substation                                                  | Uprate 115 kV bus tie breaker                                                                  | 1596 A                        | 2000 A        |
|                                                                      | Add second 230/115 kV<br>Transformer                                                           | N/A                           | 280 MVA       |
| Circuit 9335: Arapahoe -<br>South Tap - Bancroft                     | Uprate by reconductoring existing 115 kV circuit                                               | ≈ 797 A                       | 1200 A        |
| Circuit 9332: Arapahoe - Air<br>Liquide Tap - South - Gray<br>Street | Uprate by reconductoring existing 115 kV circuit                                               | 600 A                         | 798 A         |
| South Substation                                                     | Expand substation to add new<br>230 kV Yard with 230/115 kV<br>transformer                     | N/A                           | 280 MVA       |
| Circuit 5107: Daniels Park -<br>Santa Fe                             | Uprate by reconductoring existing 230 kV circuit                                               | ≈ 1214 A                      | 2000 A        |

#### Table 2 – Daniels Park Path Upgrades



Below is a more detailed description of each element of the Daniels Park Path Upgrades identified above.

#### Daniels Park Substation

The Daniels Park Substation is one of the primary import points for the Denver Metro area, where power that is transmitted long distances from southern and southeastern Colorado on Public Service's 345 kV transmission system is stepped down to the 230 and 115 kV transmission network that moves power within the Denver Metro load center. With the additional flows through the Daniels Park Substation onto the 230 kV system in a wide range of evaluated scenarios, the N-1<sup>3</sup> loss of any one of the three existing 345/230 kV transformers at the Daniels Park Substation results in overloads to the remaining transformers. The Company's analysis indicates that the addition of a fourth 345/230 kV transformer to the Daniels Park Substation mitigates these overloads.

Energy storage was qualitatively evaluated as a potential alternative, but the significant levels of power flow experienced at Daniels Park coupled with the need to continue serving load from the 230 kV system would require an infeasibly large energy storage solution to mitigate the overloads.

Power flow control devices, such as phase-shifting transformers ("PST") were evaluated, but in this case they are not viable alternatives due to the amount of power flowing into the southern metro transmission constraint. Based on discussions with PST vendors, employing the use of power flow control devices to mitigate these overloads would require a significant and costly buildout, and ultimately cause the need to invest in costly rebuilds and additional transmission assets to different parts of the system.

#### Circuits 5707 and 5111: Daniels Park – Prairie – Greenwood

Circuits 5707 and 5111 are a double circuit 230 kV transmission line that originate at the Daniels Park Substation and connect to the Prairie and Greenwood Substations. Changes in system flows caused by increased generation located to the south and east of the Denver Metro area result in significant overloads of these circuits in all scenarios studied in this Report. Circuit 5111 is currently rated for approximately 1434 amps, while Circuit 5707 is currently rated for 1200 amps. An N-1 loss of 5111 causes 5707 to overload to more than 40% of its normal rating in 2025. Additionally, with the loss of line 5707, system flows transfer to line 5111 and cause an overload of 25%.

The Company therefore identifies an upgrade to the existing Daniels Park to Greenwood 230 kV transmission circuits to address these overloads. This upgrade will involve replacing the conductor on each circuit with a new conductor rated for 2300 amps and associated equipment upgrades at the Daniels Park, Prairie, and Greenwood Substations. Transmission Engineering will be responsible for determining the exact type of conductor to be used in this upgrade, but it is anticipated that the Company will deploy an advanced High-Temperature Log Sag ("HTLS") conductor on the existing towers to meet the recommended rating.

The Company evaluated a range of adequate ratings and identified 2300 amps as the preferred rating as this presents a feasible upgrade that can be installed on this circuit using existing towers versus completely rebuilding the segment. Further increases above 2300 amps or increasing the

<sup>&</sup>lt;sup>3</sup> Terminology used to describe the outage or unexpected failure of a single component, transmission line, circuit breaker, switch or other electrical element under contingency analysis.

voltage class of these circuits could further increase the capacity of this path, however, the Company did not quantitatively evaluate this alternative because space constraints at the Daniels Park, Prairie, and Greenwood Substations along with the limitations of the transmission line rightof-way. Such a conversion would be significantly more costly and challenging to construct. A new 230 kV circuit connecting the Daniels Park and Arapahoe Substations could also potentially alleviate these overloads, however, the Company did not further investigate the construction of a greenfield transmission circuit given that the overloads are mitigated through an upgrade of the existing circuits. Additionally, a PST that directs flows away from Daniels Park to the 345 kV line towards Missile Site lessens loading on Circuits 5707 and 5111, however, existing PST technologies and standard sizing are not capable of reducing flows enough to eliminate the overloads on these circuits. Energy storage and dynamic line ratings were qualitatively evaluated as alternatives for this upgrade, however, for the reasons discussed in the Advanced Transmission Technology ("ATT") section below, the Company has concluded that neither energy storage nor dynamic line ratings are technologically capable to serve as viable alternatives for this upgrade.

#### **Greenwood Substation**

Based on the increased flows from the south that necessitate the upgrade to Circuits 5707 and 5111 discussed above, our planning analysis also identified a need to upgrade the bus tie breaker in the Greenwood Substation. The Company has identified the need to replace the existing 1215amp bus tie breaker with a new bus tie breaker rated at 2400 amps. The Company conceptually evaluated other alternatives to this upgrade, including energy storage, but no superior or viable alternatives to this element were identified because the overloads can be mitigated through the limited scope of directly replacing limiting elements identified within the substations.

## Circuit 5709: Greenwood – Arapahoe and Circuit 5717: Greenwood – Monaco Series Reactor

Power that flows along Circuits 5707 and 5111 that is not offloaded to the distribution system at the substations between Daniels Park and Greenwood continues to flow toward the center of the Denver Metro area by splitting along two paths: primarily toward the Leetsdale substation but also toward the Arapahoe Substation. Under a range of scenarios, the transmission path from Greenwood to Leetsdale experienced N-1 overloads above 150% of the paths existing continuous rating and the transmission path from Greenwood to Arapahoe experiences N-1 overloads to as much as 107% of the circuit's existing continuous rating.

The Company evaluated two alternatives to alleviate the overloads of circuits that extend from the Greenwood Substation toward the center of the Denver Metro. These include: (1) installing a power flow controller on the Greenwood to Monaco circuit paired with upgrading the 230 kV Greenwood to Arapahoe Circuit 5709; or (2) upgrading the existing 230 kV circuits and substations along the Greenwood to Leetsdale path. The Company's preferred alternative is to install a power flow controller on the Greenwood to Monaco circuit paired with upgrading the 230 kV Greenwood to Arapahoe Circuit 5709. This alternative is superior due to the higher cost and complexity of upgrading the Greenwood to Leetsdale path.

The preferred alternative alleviates overloads on the Greenwood to Leetsdale path by using a power flow control device to redirect power flows away from that path and onto the Greenwood to Arapahoe circuit. For the power flow controller, the Company's Transmission Engineering evaluated both a conventional series reactor and an ATT known as a Smart Valve. Based on



cost, availability, and space constraints, the Company identified the need for a series reactor to control power flow. To accommodate the redirected flows, this upgrade also involves replacing the existing conductor rated at 1440 amps with new conductor rated for 2400 amps between the Greenwood and Arapahoe substations. Circuit 5709 was recently placed into service as part of the Greenwood – Denver Terminal 230 kV project. This identified upgrade makes use of the new towers and only involves the replacement of the conductor between the Greenwood and Arapahoe Substations. While the Company's Transmission Engineering will determine the specific type of conductor for this upgrade, we anticipate installing an advanced HTLS conductor on the existing towers to meet the recommended rating.

In addition to the two alternatives discussed above, the Company also qualitatively considered other alternatives to this upgrade including energy storage and ATTs but did not identify any other viable solutions. As discussed above regarding Circuits 5707 and 5111, a new 230 kV circuit connecting the Daniels Park and Arapahoe Substations, along with power flow control devices, could also potentially alleviate these overloads. The Company did not further investigate constructing this type of greenfield transmission circuit given that the overloads are mitigated by upgrading existing circuits.

#### Arapahoe Substation

The Company has identified two upgrades needed at the Arapahoe Substation based on increased flows from the south of the Denver Metro area.

First, the Company's analysis identified overloads to the 115 kV bus tie breaker in the Arapahoe Substation. Based on those overloads, the Company has identified the need to replace the existing 1596-amp bus tie breaker with a new bus tie breaker with a rating of 2000 amps. The Company did not identify any other viable alternatives to this upgrade because it is the direct replacement of a limiting element identified within the substation.

In some dispatch cases, contingencies resulted in overloads to the 230/115 kV transformer in the Arapahoe Substation. In order to mitigate these overloads, the Company will need to add a new transformer in the substation to support both predominant power flows in southwest Denver as well as additional load growth. This 230/115 kV transformer will support the 115 kV system in the Denver Metro area by mitigating the overload on the other 230/115 kV transformer currently at Arapahoe substation. Other options to redirect flow and mitigate the overloads on the existing 230/115 kV transformer were considered, but these options would require redirecting flows coming into the southern metro transmission constraint and onto different 230/115 kV transformer given the increased complexity and expected higher cost.

#### Circuit 9332: Arapahoe – Air Liquide Tap – South – Gray Street

The existing 115 kV Arapahoe – Air Liquide Tap – South – Gray Street Circuit 9332 is currently rated at 600 amps. While the conductor used on this circuit is rated at 798 amps, the circuit cannot be used at the maximum conductor rating due to the presence of 600-amp switches in substations. Under an N-1 loss of the 115 kV bus tie at the Arapahoe Substation, circuits connecting the Arapahoe and South substations experienced overloads. To increase the circuit rating to match the existing conductor rating, the Company has identified the need to replace the limiting switches in the 115 kV substations along this circuit to allow for it to be operated at the full 798-amp rating of the conductor. The Company conceptually evaluated other alternatives to this upgrade, including energy storage, but no superior or viable alternatives to this upgrade were



identified because the overloads can be mitigated through the limited scope of directly replacing limiting elements identified within the substations which was determined as the most cost-effective solution.

#### Circuit 9335: Arapahoe – South Tap – Bancroft

As discussed in relation to the Arapahoe – Air Liquide Tap – South – Gray Street Circuit 9332 circuit, under the N-1 loss of the 115 kV bus tie at the Arapahoe Substation, circuits between the Arapahoe Substation and South Substation experience overloads under a variety of dispatch scenarios studied in this analysis. In order to address these overloads, the Company's preferred alternative is to upgrade this circuit by rebuilding it at a rating of 1200 amps. Based on feedback from the Company's Transmission Engineering team, this circuit is not considered a viable candidate for reconductoring due to the age and condition of the existing towers. Alternatives to this project were qualitatively considered, including adding an additional circuit along this path, however, the Company did not further investigate the construction of a greenfield transmission circuit given that the overloads are mitigated through upgrading the existing circuit. Energy storage and dynamic line ratings were qualitatively evaluated as alternatives for this upgrade, however, for the reasons discussed in the ATT section, neither technology was determined to be capable to serve as a viable alternative for this upgrade.

#### South Substation

The study identified overloads on each of the 230/115 kV transformers in the Arapahoe Substation under the N-1 loss of the other parallel transformer. Additionally, the N-1 loss of the Arapahoe bus tie caused an overload of the Denver Terminal bus tie. The Company evaluated several alternatives to resolve these overloads. While these overloads could be addressed through further upgrades to all the identified overloaded elements (*i.e.*, the Arapahoe 230/115 kV transformers and the Denver Terminal bus tie), the Company identified a single upgrade that addresses these overloads simultaneously by adding greater power transformation capacity in this part of the Denver Metro area. Energy storage was qualitatively considered as an alternative to this upgrade; however, it was not identified as a viable alternative to this upgrade due to the overloads being caused by the contingency loss of other transmission assets. The Company is planning to expand its existing 115 kV South Substation through by using an in and out tap on the 230 kV Arapahoe to Dakota Circuit 5623 and add a 230/115 kV, 280 MVA transformer at the newly expanded South Substation.

#### Circuit 5107: Daniels Park – Santa Fe Circuit 5107

Under the N-1 loss of the Greenwood to Arapahoe Circuit 5709 in the Comanche Stress Case dispatch scenario, this 230kV circuit from Daniels Park to Santa Fe experiences a 102% overload. Given the location of this segment, the Company anticipates loading on this path will only continue to increase going forward. Thus, in order to resolve this overload, the Company plans to reconductor this circuit, which will increase its rating from approximately 1214 amps to 2000 amps. Transmission Engineering will be responsible for determining the exact type of conductor to be used in this upgrade, but the Company anticipates installing an advanced HTLS conductor on the existing towers to meet the recommended rating.

The Company considered other ATTs as alternatives to this element but did not identify any viable solutions that would avoid the need to uprate the line. As discussed in the ATT section, the Company's evaluation did not identify dynamic line rating as a viable alternative to the upgrade of this circuit. Though the overload is caused by a contingency, this overload could potentially



23

be mitigated with the deployment of an energy storage system at the Arapahoe 230 kV Substation. This alternative was qualitatively analyzed and identified as a non-preferred alternative compared to reconductoring the overloaded circuit as it would require additional land adjacent to the Arapahoe Substation, the installation of a complicated switching scheme to isolate the 230 kV and 115 kV systems, and the installation of multiple transformers. Additionally, further analysis would be needed to validate that the flows on this line are sufficiently low in off-peak hours to fully charge the battery and allow it to operate when needed to mitigate the identified overload. Such an energy storage system would have limited secondary value to the grid as it would only be deployed for the purpose of mitigating the overload. Based on this analysis, the Company does not consider energy storage deployment to be a preferred or viable alternative to the identified upgrade.



#### 2. SMOKY HILL PATH UPGRADES

Similar to the Daniels Park path, Smoky Hill and its neighbor Harvest Mile have been, and continue to be, primary injection points from the 345 kV transmission system into the Denver Metro area. Combined, this location is referred to as the eastern metro transmission constraint. The addition of the Approved Portfolio will significantly increase flows across the eastern metro transmission constraint. Through the upgrades described below in Table 3 below, the Company has identified the need to increase the capabilities of the eastern transmission path that move power from outside of the Denver Metro to customers on the other side of the transmission constraint.

| Project Element                                                      | Description                                      | Existing<br>Rating | New<br>Rating |
|----------------------------------------------------------------------|--------------------------------------------------|--------------------|---------------|
| Smoky Hill Substation                                                | Add new 345/230 kV transformer                   | N/A                | 560 MVA       |
| Smoky Hill - Buckley Circuit 5167                                    | Uprate by reconductoring existing 230 kV circuit | 1262 A             | 2000 A        |
| Smoky Hill - Buckley - Tollgate -<br>Jewell - Leetsdale Circuit 5285 | Uprate by reconductoring existing 230 kV circuit | 1200-1214<br>A     | 2000 A        |
| Denver Terminal - Elati Circuit<br>5625                              | Uprate by reconductoring existing 230 kV circuit | 770 A              | 2000 A        |
| Leetsdale - Harrison Circuit 9955                                    | Uprate by reconductoring existing 115 kV circuit | 708 A              | 1900 A        |

#### Table 3 – Smoky Hill Path Upgrades

Below is a more detailed description of each element of the Smoky Hill Path Upgrades identified above.

#### Smoky Hill Substation

The Smoky Hill Substation is one of the primary import points for the Denver Metro area. Here, power that is transmitted long distances from eastern and southeastern Colorado on Public Service's 345 kV transmission system steps down to the 230 kV and 115 kV transmission network that moves power within the Denver Metro load center. With the additional flows through the Smoky Hill Substation onto the 230 kV system in a wide range of evaluated scenarios, the N-1 loss of either one of the two existing 345/230 kV transformers at the Smoky Hill Substation results in overloads to the remaining transformer. The Company qualitatively evaluated a range of alternatives to mitigate the overloads to the Smoky Hill 345/230 kV transformers and identified the addition of a third 345/230 kV transformer to the Smoky Hill Substation as the preferred alternative to mitigate this overload.

Energy storage was qualitatively evaluated as a potential alternative, but the significant levels of power flow experienced at Smoky Hill and the need to continue serving load from the 230 kV system would require an infeasibly large energy storage solution to mitigate the overloads. Power flow controller devices were also qualitatively evaluated but are also not capable of managing the levels of power flow at the Smoky Hill Substation. These are therefore not considered viable alternatives.

#### Circuits 5167 and 5285: Smoky Hill – Buckley – Tollgate – Jewell – Leetsdale Circuit 5285

Circuits 5167 and 5285 are a 230 kV double circuit transmission line originating at the Smoky Hill Substation with connections at the Buckley, Tollgate, and Jewell Substations. At the Leetsdale Tap, located to the west of the Jewell Substation, the circuits split and Circuit 5285 continues to the Leetsdale Substation, while Circuit 5167 continues to the Sullivan Substation. Similar to the overloads identified on Circuits 5707 and 5111 discussed in the Daniels Park Path Upgrades, Circuit 5167 from Smoky Hill to Buckley and Circuit 5285 from Smoky Hill to Leetsdale experience significant overloads under N-1 contingencies due to increased renewable imports into the Denver Metro area from the Smoky Hill/Harvest Mile area.

The Company's preferred alternative is to upgrade the existing 230 kV transmission lines between Smoky Hill and Leetsdale to address these overloads. This upgrade will involve replacing the conductor currently installed on each circuit with a new conductor rated for 2000 amps. Transmission Engineering will be responsible for determining the exact type of conductor to be used in this upgrade, but the Company anticipates it will install an advanced HTLS conductor on the existing towers to meet the recommended rating. The Company's Transmission Planning analysis indicates that upgrades to Circuit 5285 are required for the entire path from Smoky Hill to Leetsdale. While power flows indicate that Circuit 5167 only requires an upgrade between Smoky Hill and Buckley to avoid overloads, the Company's Transmission Engineering organization recommends that Circuit 5167 also be simultaneously upgraded between Buckley Substation and the Leetsdale Tap due to engineering design, procurement, permitting, and construction considerations. This is largely driven by the efficiencies that can be achieved by upgrading both circuits attached to the same towers at the same time. While further upgrades would be required to allow the circuit rating to be increased for the full path to the Sullivan Substation, upgrading Circuit 5167 in this manner creates additional transmission headroom and minimizes the future need for rework on this transmission circuit.

The Company evaluated a range of alternatives in identifying this proposed upgrade. The Company identified 2000 amps as the preferred rating as this was the balance between the highest capacity upgrade that could be installed on the existing towers without requiring a complete rebuild of the path. While increasing the voltage of these circuits could further increase the capacity on this path, the Company did not quantitatively evaluate this alternative because space constraints at the substations and transmission line right-of-way make this conversion would be extremely costly. Additionally, a PST that directs flows away from away from Smoky Hill could lessen loads on these circuits, however, existing PST technologies are not capable of reducing flows enough to eliminate the overloads on these circuits and would either cause or exacerbate overloads on other circuits, in turn requiring more significant upgrades in other parts of the Denver Metro area. Energy storage and dynamic line ratings were qualitatively evaluated as alternatives for this element, however, for the reasons discussed in the ATT section, neither energy storage nor dynamic line ratings are technologically capable to serve as viable alternatives for this element.

A new 230 kV circuit connecting the Harvest Mile and Cherokee Substations, including intermediate terminations, could also alleviate these overloads. However, the overloads identified in this analysis are mitigated through an upgrade of the existing circuits. While such a project is not needed to meet the system needs caused by the Approved Portfolio, the construction of a new parallel path will likely be needed in the future to support additional load growth, the retirement of generation resources in the Denver Metro area, and the addition of more renewable generation outside of the Denver Metro area.



#### Circuit 5625: Elati – Denver Terminal

Circuit 5283, an underground 230 kV transmission line connecting the Leetsdale, Monroe, and Elati Substations, and Circuit 5625 from Elati to Denver Terminal, are the parallel path to the Greenwood – Arapahoe – Denver Terminal 230 kV circuit. As noted in the Network Topology & Planned Projects section above, Public Service has previously identified the need to upgrade Circuit 5283 based on the condition of the underground conductor that recently led to the circuit being derated. During an N-1 outage of the Greenwood – Arapahoe – Denver Terminal circuit, the increased flows on this parallel path can be accommodated by the increased rating planned for Circuit 5283, however, Circuit 5625 from Elati to Denver Terminal experiences overloads based on the rating of the exiting transmission line and substation equipment. The Company evaluated a range of alternatives to address the overloads on Circuit 5625 and identified that upgrading the circuit to equal the new rating planned for Circuit 5283 from Leetsdale to Elati is the preferred solution to mitigate this overload.

The Elati to Denver Terminal is the continuation of Circuit 5283. Similarly, increasing the segment rating is the only feasible solution that addresses the root of the problem. Shifting power flow from the 230kV circuit with either a PST or series reactor does not increase the overall path rating and causes overloading on parallel circuits. Though battery storage could be deployed, due to factors associated with battery duration and state of charge, this technology does not provide a reliable option to mitigate NERC violations, which could remain for an unknown outage duration.

#### Circuit 9955: Leetsdale – Harrison

With increased imports flowing across the 230 kV system toward the center of the Denver Metro area, the 115 kV Leetsdale to Harrison Circuit 9955 experiences overloads across a variety of dispatch scenarios as a result of the N-1 loss of the 230 kV Leetsdale – Monroe Circuit 5283. As this is a 115 kV line running parallel to a 230 kV line, much of the flows on the 230 kV line transfer over to the 115 kV line with the loss of the 230kV circuit. To address the overloads caused by this outage, the Company proposes to rebuild this line from its current 708 A rating to 1900 A. Energy storage is not a viable alternative to this upgrade given that limited operational durations are not capable of fully mitigating N-1 overloads, and because space constraints preclude the installation of large-scale energy storage systems. Additional alternatives were also considered, but all solutions required new greenfield transmission line expansion along with a re-configuration of the 115 kV lines in downtown Denver. The Company did not further investigate these options as the overloads were mitigated through upgrades of the existing circuits at a lower cost and complexity.

#### **Circuit 9007: Capitol Hill to Denver Terminal**

During the analysis performed and under most of the dispatch scenarios, Circuit 9007 between the Denver Terminal and Capitol Hill substations was identified as an overload in certain cases. This line overloads under a wide variety of N-1 contingencies. For example, in the 2028 Comanche stress case, there were more than ten metro area contingencies that caused this line to overload more than 30% of its normal operating rating. The Company's Transmission Planning team engaged in an iterative process with the Company's engineering teams to identify an upgrade to the circuit, however, through this effort the Company determined that an upgrade that sufficiently mitigated the overloads was infeasible for a variety of factors. Circuit 9007 is an underground high-pressure fluid-filled transmission line, and there are currently no conductors available that would be able to achieve the necessary line rating uprate while utilizing the existing underground pipe and transmission line right-of-way. This type of transmission line, being high



27

pressure fluid filled is restricted to upgrade by its nature. The three phase transmission conductors are wrapped in paper, placed in a steel conduit (approximately six inches in diameter), and impregnated with mineral oil, which is held under pressure by pumping plants at either end of the line. The mineral oil is circulated as a mechanism to both cool and dissipate thermal variability at any bend or angle in the line. New paper-wrapped conductor with slightly higher capacity could be pulled into the conduit at an estimated cost of approximately \$31.5 million. But this limited upgrade would not allow for the ampacity required. The existing line route is densely urban and includes a river crossing. This crossing could not be used for alternative engineering solutions, such as conductor insulated by cross linked polyethylene (commonly abbreviated as XLPE). Similarly, the Company's engineering teams were unable to identify an alternative route at this time. The installation of a new underground 115kV transmission line would entail utility planning and redesign in collaboration with the City of Denver. The solution would include XLPE transmission conductors installed in a large concrete duct bank (approximately 10 ft. by 10 ft.). The route would be as direct as possible with many underground utilities coordinated. The substations at either end of the line would require extensive construction to cut over from the HPFF line to the XLPE and remove the HPFF facilities.

The Company evaluated whether an operational solution was available for this overload within the dispatch scenarios and contingencies studied. Through this analysis, the Company has determined that, based on current load and generation assumptions, it could choose to open this line should the contingency arise and still effectively operate the system around such an overload. To this end, the tables in Appendix B are shown with this line open. This action to switch open the line as needed ,was evaluated here as an interim solution and would be leveraged by system operators under contingency conditions. While the Company believes this is a reasonable solution for the time being, this is not expected to be a long-term solution. Accordingly, the Company plans to continue studying this overload, and identify whether and what feasible long-term Transmission Planning or engineering solution may be warranted. The Company will update stakeholders and the Commission as appropriate through future filings.

#### 3. CHEROKEE AREA UPGRADES

The Cherokee Substation - by virtue of the connected generation located at this substation - plays a key role in supporting the Denver Metro area transmission system by providing counter flow to the eastern and southern Denver Metro constraints. To fully maximize the proposed upgrades identified in this study, and to mitigate additional overloads caused by the change in the system generation portfolio, the Company has identified the following system improvements around in and around Cherokee, as reflected in Table 4 below.

| Project Element                                                                                             | Description                                                                                                                            | Existing<br>Rating | New<br>Rating |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| New Substation A                                                                                            | Construct a new 115 kV<br>substation tying Circuits<br>9542, 9546, and 9549                                                            | N/A                | N/A           |
| New Transmission Line Cherokee<br>- New Substation A                                                        | Construct a new 115 kV<br>transmission line from the<br>new 115 kV substation to the<br>north 115 kV bus in the<br>Cherokee Substation | N/A                | 1600 A        |
| Circuit 9542: Cherokee to New Substation A                                                                  | Uprate by reconductoring/<br>rebuilding existing 115 kV<br>circuit from the in-and-out at<br>the new 115 kV Substation to<br>Cherokee  | 770 A              | 1600 A        |
| Cherokee to Mapleton to New 115<br>kV Substation Circuit 9546:<br>Cherokee – Mapleton – New<br>Substation A |                                                                                                                                        | 799 A              | 1600 A        |
| Circuit 9549: Cherokee – Conoco –<br>New Substation A                                                       | Uprate by reconductoring/<br>rebuilding existing 115 kV<br>circuit from the new 115 kV<br>Substation to Conoco South                   | 799 A              | 1200 A        |
| Circuits 9055, 9558, and 9464:<br>Cherokee – Federal Heights –<br>Semper – Broomfield                       | Uprate by reconductoring existing 115 kV circuit                                                                                       | 798-1029 A         | 2000 A        |

#### Table 4 – Cherokee Area Upgrades

Below is a more detailed description of each element of the Daniels Park Path Upgrades identified above.

#### New Substation A<sup>4</sup>

There are a variety of N-1 outages on lines and transformers around Cherokee that materialize under the variety of the generation dispatch scenarios analyzed in this study. The initial mitigation

<sup>&</sup>lt;sup>4</sup> At this time, the Company is referring to this substation as "New Substation A" as a placeholder until a formal name is selected for the new substation.



solution was to re-establish the Cherokee 115 kV bus tie. However, after working with our engineering teams, it was deemed an infeasible solution due to the short circuit fault current between the two buses, which would expand the scope of the solution to include replacement of multiple circuit breakers within the substation. This would have called for replacing at least 34 substation breakers along with significant bus reconfiguring work. Multiple alternatives to the Cherokee bus-tie were evaluated and subsequently rejected for greenfield solution, which is the addition of a new 115 kV switching station approximately two miles southeast of the existing Cherokee substation. This new 115 kV station will include in and out taps of lines 9542,9546, and 9549.

As an alternative to constructing this new substation, the Company considered and evaluated the rebuild of the Chambers-Havana-Arsenal-Derby – Cherokee 115 kV Circuit. The Company also evaluated reconfiguring the line connections coming into both the 230 and 115 kV Cherokee buses. None of the alternatives studied would fully mitigate the overloads, or, involved significantly larger and more complex project scopes than the proposed solution.

#### New Transmission Line Cherokee – New Substation A

To mitigate overloads on the transmission paths in and out of the Cherokee Substation, the Company will need to add a two-mile new 1600 A rated 115 kV transmission line between the new 115 kV Substation A and Cherokee. The Company evaluated several alternatives to this new line, including multiple line rebuilds around the Denver Metro area. These alternatives were eliminated as they were more expansive and less beneficial than the Company's planned solution. Energy storage and dynamic line ratings were qualitatively evaluated as alternatives for this upgrade, however, for the reasons discussed in the ATT section, neither energy storage nor dynamic line ratings were technologically capable to serve as viable alternatives for this upgrade.

#### Circuit 9542: Cherokee – New Substation A

Line 9542 currently has a line rating of 770 A. For this element, the Company plans to uprate the section between the Cherokee Substation and the new 115 kV New Substation A to 1600 amps. This rating is sufficient for the system under multiple N-1 contingencies to move power between the Cherokee North and South buses, thus mitigating overloading other elements of the system. The Company qualitatively considered several alternatives to this upgrade, but all solutions would have required new greenfield transmission lines and additional re-configuration of the downtown 115 kV lines. The Company did not further investigate the construction of a greenfield transmission reconfiguration given that the overloads are mitigated through upgrades to the existing circuit. Energy storage and dynamic line ratings were qualitatively evaluated as alternatives for this upgrade, however, for the reasons discussed in the ATT section, neither energy storage nor dynamic line ratings are technologically capable to serve as viable alternatives for the upgrade.

#### Circuit 9546: Cherokee to Mapleton to New Substation A

Circuit 9546 between Cherokee to Mapleton and Sandown currently has a line rating of 799 amps. As part of this element, the Company plans to uprate the sections between Cherokee to Mapleton and the new 115 kV switching station to 1600 A. This rating is sufficient for the system under multiple N-1 contingencies to move power between the Cherokee North and South buses, thus mitigating other overloads on the system. Additional alternatives were qualitatively considered, but all solutions would have required new greenfield transmission lines and additional reconfiguration of the downtown 115 kV lines. The Company did not further investigate the



construction of a greenfield transmission circuit/reconfiguration given that the overloads are mitigated through upgrades of the existing circuit. Energy storage and dynamic line ratings were qualitatively evaluated as alternatives for this upgrade, however, for the reasons discussed in the ATT section, neither energy storage nor dynamic line ratings are technologically capable to serve as viable alternatives for this upgrade.

#### Circuit 9549: Cherokee – Conoco – New Substation A

Circuit 9549 between Conoco South and Sandown currently has a line rating of 799 amps. As part of this upgrade, the Company plans to uprate the section of line between the new 115 kV switching station and Conoco South to 1200 A. This rating is sufficient for the system under multiple N-1 contingencies to move power between the Cherokee North and South buses, thus mitigating overloads on other elements of the system. Additional alternatives were qualitatively considered, but all solutions would have required new greenfield transmission lines and additional re-configuration of the downtown 115 kV lines. The Company did not further investigate the construction of a greenfield transmission circuit/reconfiguration given that the overloads are mitigated through upgrades of the existing circuit. Energy storage and dynamic line ratings were qualitatively evaluated as alternatives for this upgrade, however, for the reasons discussed in the ATT section, neither energy storage nor dynamic line ratings are technologically capable to serve as viable alternatives.

#### Circuits 9055, 9558, and 9464: Cherokee – Federal Heights – Semper – Broomfield

The prevailing flows on this path run from Valmont to Cherokee. With the addition of the Approved Portfolio, under the dispatch scenarios described in this study, we now see the direction of flow change direction and flow out from Cherokee in a northern direction. With this change, an N-1 outage of either circuit will overload the other. The lines on this path currently have ratings ranging from 798-1029 A. To mitigate these overloads, the Company has identified the need to rebuild these circuits to a rating of 2000 amps. Additional alternatives were qualitatively considered, but all solutions would have required new greenfield transmission lines. The Company did not further investigate the construction of such a greenfield transmission circuit given that the overloads are mitigated through upgrades of the existing circuit. Energy storage and dynamic line ratings were also qualitatively evaluated as alternatives for this upgrade, however, for the reasons discussed in the ATT section, neither energy storage nor dynamic line ratings are technologically capable to serve as viable alternatives.

#### 1. ADDITIONAL STUDIES

Transmission planning is not a static activity that occurs at a single point in time and thus careful consideration must be taken when reshaping the state's grid to reliability and cost effectively meet the state's emission reduction goals. The Projects identified in this Study Report reflect the Company's analysis of the generators included in the portfolio approved by the Colorado Public Utilities Commission in the 2021 ERP & CEP, but do not reflect additional future needs for future resource additions and additional load growth expected beyond the horizon of this Study. The Company will continue to evaluate the transmission network across the state through the established processes as we strive to incorporate new load requests, a growing distribution network, as well as generation retirements and replacements. In October 2024, the Company will file its Just Transition Solicitation ("JTS") resource acquisition plan with the Colorado Public Utilities Commission to acquire additional generation resources to serve growing load and meet emissions reduction requirements through 2031. The Company will put forward additional transmission analysis in that proceeding describing anticipated future transmission needs.

#### **Denver Metro Voltages**

Voltage issues are directly impacted by the load profile and reactive power demands of the load's power factor. There is an opportunity to right size the reactive components, such as capacitor banks and shunt reactors to adequately adjust the voltage level as needed when evaluating new transformer additions. This evaluation is highly dependent on the anticipated load levels at the specific substation locations.

During the study process the Company monitored voltage levels pre- and post- contingency. Two areas within the Denver Metro were identified as having voltage violations driven by increased load. Lafayette and Waterton substation will both require voltage support and will be added as part of the substation work when the additional transformer banks are added to the existing stations or mitigated though the addition of new distribution stations if needed. Please see Appendix B for the Pre and Post Thermal Overloads Under Contingency for 2025 – 2028.

#### San Luis Valley

Within the 2021 ERP & CEP 120 Day Report, there were five network upgrade projects identified as needed within the San Luis Valley. The system needs within the San Luis Valley were not evaluated within the scope of this Study Report. However, the Company will seek to evaluate these further within the Colorado Coordinated Planning Group and its San Luis Valley ("SLV") Subcommittee. This is anticipated to commence late 2024 or early 2025 based the availability of the SLV Subcommittee.

#### **Open Access Transmission Tariff Studies**

Interconnection and transmission service for all generation bids are subject to the terms of the Xcel Energy's OATT. Generator interconnection requests are subject to the applicable Large Generator Interconnection Process ("LGIP") contained within Attachment N of the OATT. To qualify the resources acquired through the 2021 ERP & CEP as Designated Network Resources ("DNRs") to serve Network Load, or Public Service's retail customers, the Company will request Network Integration Transmission Service ("NITS") for all generators pursuant to its OATT. This study is not intended as a replacement for the LGIP or DNR process and results of studies



conducted pursuant to OATT requirements may identify incremental network upgrades necessary to provide transmission service to generation acquired in the 2021 ERP & CEP. For example, the studies conducted pursuant to the OATT may identify incremental transmission system needs based on the replacement of failed bids in the 2021 ERP & CEP or the results of studies of priorqueued interconnection and network service requests not accounted for in this Study Report.

#### 2. DIFFERENCES FROM THE 2021 ERP & CEP 120-DAY REPORT TRANSMISSION ANALYSIS

In the Company's 2021 ERP & CEP 120-Day Report and accompanying Phase II Transmission Report, the Company put forth a preliminary portfolio of potential transmission projects to support the Company's Preferred Portfolio, consisting of the May Valley – Longhorn Extension of the Colorado's Power Pathway Project, Denver Metro Transmission Network upgrades, San Luis Valley Transmission network Upgrades, and Grid Strength Reinforcement and Reactive/Voltage Support. The Phase II Transmission Report identified a set of specific network upgrades, including 25 projects primarily located in the Denver Metro area and San Luis Valley.<sup>5</sup>

The Transmission Network Improvement Projects for area are expected to be significantly reduced in cost compared the Denver Metro Transmission Network Upgrades presented in the Company's Phase II Transmission Study. This reduction is due in large part to the deferral of projects based on delayed resource acquisitions. The Company's analysis in the Just Transition Solicitation continues to identify that larger-scale transmission needs originally identified in the 2021 ERP & CEP 120-Day Report remain in consideration for future needs. In addition, the Company's refined and more developed transmission study efforts also afforded the ability to identify and evaluate feasible and more cost-effective alternatives.

By performing the analysis on both the Preferred Portfolio and later a more refined analysis on the Approved Portfolio, the Company was able to gain critical insight into how the transmission system may respond with the CEP's renewable generation acquisitions. The Company also compared and contrasted the 2021 ERP & CEP 120-Day Report transmission study results with the study results within this Report to determine which projects had alignment between the larger Preferred Portfolio and the Approved Portfolio. These common projects were evaluated further to test for durability across multiple dispatch scenarios and were sized (*i.e.* project rating) accordingly to avoid any potential redesigns. Projects unique to this Study were also pressure tested against several stress conditions associated with different dispatches to ensure an appropriate project rating.

Through this study process the Company has determined the future transmission system will need an additional significant transmission path into the Denver Metro area to alleviate system constraints expected to result from growing load and the continued clean energy transition. This need was originally reflected in the 2021 ERP & CEP 120-Day Report as a double circuit 230 kV line from Harvest Mile to Cherokee with connections at additional substations currently located along this path. This project is not identified as needed to reliably deliver the output of the Approved Portfolio to Public Service's customers, due primarily to the reduced size of the Approved Portfolio compared to the Preferred Portfolio that served as the basis of the Company's transmission analysis in the 2021 ERP & CEP. While the Company is not proposing this project as needed at this time, the Company continues to believe that a 230 kV transmission path in the Denver Metro area will be needed based on load growth and additional generation identified in

<sup>&</sup>lt;sup>5</sup> An analysis of the upgrades needed for the San Luis Valley is subject to a separate review through the Colorado Coordinated Planning Committee and will be brought forward at a future time.



the JTS. The Transmission Network Improvement Projects have been developed with this future project in mind to ensure the Projects identified in this study are properly valued. The double circuit expansion concept has been shown support the Daniels Park and Smoky Paths delivering generation to the Denver Metro area. This conceptual third path helps to share in the flow among the two existing paths and will provide increased reliability and operational flexibility. The construction of an additional path will only further increase the system benefits from many of the Projects outlined in this study to help reliably serve the system in the future.

In the next section, the Company will walk through the details of the Transmission Planning Study process employed to identify and evaluate the Transmission Network Improvement Projects identified above.



## IV. TRANSMISSION PLANNING STUDY PROCESS

The Company's approach to transmission planning prioritizes the identification of cost-effective projects that improve the resiliency and reliability of the transmission network. Proposed transmission projects must accomplish the goal of relieving potential overloads as well as providing operational flexibility to account for unexpected outages and unique operational circumstances. Further, the Company seeks to enhance value by seeking projects with multi-level benefits. The Company seeks to develop projects that balance short- and long-term system needs with costs. This is done by evaluating the transmission project concepts under a multitude of scenarios and dispatch stress cases to ensure the project is durable and adequate to serve customers' needs for years to come.

Importantly, the planning approach that Public Service has taken strives to transition our transmission system consistent with our evolving clean energy transition and thus considers long-term system growth, typically on a multi-year timeline and utilizes multiple dispatch scenarios which make further use of renewable generation to serve loads. This is particularly important in Colorado, where the Company's service territory is looking at significant load growth and state policies which increasingly prioritize the replacement of fossil-fueled generation with low carbon resources. Given the cost impacts of replacing assets early in their usable life, the Company avoids the development of minimum viable transmission projects that are unable to accommodate expected future growth and instead prioritizes projects that strike a reasonable balance between short- and long-term system needs. This is done by evaluating the transmission project concepts on a long-term horizon using forecasted load growth assumptions and applying a dispatch stress.

In evaluating the Approved Portfolio from a transmission planning perspective, the Company identified transmission deficiencies, needs, and projects by evaluating transmission system performance across a range of scenarios and time horizons. For each case analyzed, power flow contingency analysis results were produced for both system performance criterion; thermal and voltage violations during system intact (N-0) and single contingency event (N-1) analysis. The thermal violations represent the transmission capacity limiting facilities. Thermal (capacity) violations attributed to station equipment ratings are mitigated by replacing the limiting element(s) within substation. For example, thermal (capacity) violations that are transmission line conductor rating limited can be mitigated by reconductoring or rebuilding the line, or by identifying a transmission expansion alternative that mitigates multiple thermal violations by providing an additional transmission path in the network. Conductor upgrades can provide capacity benefits but may not be able to provide the same amount of capacity benefits as constructing an additional transmission line.

### A. STUDY ASSUMPTIONS

This study focuses on the delivery of renewable generation included in the Approved Portfolio and the associated transmission impacts to Public Service's system to accommodate the delivery of the Approved Portfolio to the Company's load centers. The study analyzes aggressive renewable dispatch levels consistent with the levels required to meet the Company's emissions reduction targets consistent with the 2021 ERP & CEP.

#### **1. GENERATION ASSUMPTIONS**

The study assumes an increased amount of renewable generation dispatch and limits the use of thermal generators to a defined amount in each case as described in the Generation Dispatch section below. This approach was designed to identify system issues under a high renewable



dispatch scenario. By maintaining a consistent level of thermal generation across each year case study and allowing the growing load to be served by renewable generation such as wind and solar, the study highlights system constraints that may occur on high wind and high solar potential days. This enables the Company to identify areas of the transmission network that need enhancements so the Company can achieve its carbon emission goals, serve customers reliably, and reduce curtailments. The generation assumptions account for the planned new generation resources included in the Approved Portfolio detailed in Appendix A, as well as planned unit retirements and power purchase agreement expirations during the years studied. The Company's power flow case files contain benchmark generation data consistent with the generation and dispatch assumptions detailed in this Report.

#### 2. PLANNING CRITERIA

The analysis included steady state system intact and steady state P-1 (single) contingency conditions monitoring both thermal and voltage violations. Public Service adheres to the WECC thermal and voltage criteria as outlined in Table 5 below and in accordance with both the Company's FERC 715 filing and the TPL-001 WECC-CRT, which are provided in Appendices D and E.

| Element                   | System Intact Condition   | Post-Contingency<br>Condition                             |
|---------------------------|---------------------------|-----------------------------------------------------------|
| Transmission Line Loading | 100% of Continuous Rating | 100% of Continuous Rating<br>for single (P-1) Contingency |
| Transformer Loading       | 100% of Continuous Rating | 100% of 8-hour Rating                                     |
| Bus Voltage               | 0.95 to 1.05 per unit     | 0.90 to 1.10 per unit                                     |

#### Table 5: Steady State Planning Criteria

System conditions for area and inter-area ties were monitored for any violations. Violations outside of Public Service ownership were tracked for further analysis with neighboring Transmission Owners.

#### 3. SOFTWARE

The software used in this study was Siemens PSS®E version 35.6.1

#### 4. STUDY CASE LOADS

The total load for Public Service's Balancing Authority (BA, WECC Area 70 (or A70)) in each case is listed below. These load values are provided by Public Service's Resource Planning and Load Forecasting teams.

| Year                                | Peak Demand (PSCO Scaled Load) |
|-------------------------------------|--------------------------------|
| 2025                                | 6760                           |
| 2026                                | 6862                           |
| 2027                                | 7049                           |
| 2028                                | 7040                           |
| Clean Energy Plan (2029)            | 7301                           |
| Just Transition Solicitation (2031) | 7491                           |

Table 6: Total Load for Public Service's Balancing Authority by Case<sup>6</sup>

## 5. NETWORK TOPOLOGY & PLANNED PROJECTS

The Company developed the study cases from WECC approved models to reflect the listed study horizons. The following projects are included per the Company's In-Service date as noticed per the Company's FERC 890 Project updates.

| 2025 | Colorado's Power Pathway 345 kV Segment 2           |
|------|-----------------------------------------------------|
|      | Colorado's Power Pathway 345 kV Segment 3           |
|      | May Valley 345 kV Substation                        |
|      | Goose Creek 345 kV Substation                       |
|      | Canal Crossing 345 kV Substation                    |
|      | Kestrel 230kV Substation                            |
|      | Waterton Substation Expansion                       |
| 2026 | Colorado's Power Pathway 345 kV Segment 1           |
|      | Poder Substation                                    |
| 2027 | Gilman – Avon 115 kV                                |
|      | Colorado's Power Pathway 345 kV Segment 4           |
|      | Colorado's Power Pathway 345 kV Segment 5           |
|      | Leetsdale – Monroe – Elati 230 kV Line 5283 Upgrade |
|      | Sandstone 345 kV                                    |
|      | Gray Street Substation Upgrade                      |
|      | Barker Substation (Transformers 1 & 2)              |
| 2028 | Climax – Robinson Rack – Gilman 115 kV              |
|      |                                                     |

Table 7: Projects by In Service Year

<sup>&</sup>lt;sup>6</sup> Note that these load growth assumptions are based on point-in-time assumptions that are intended to align this transmission portfolio with the 2021 ERP & CEP proceeding. The Company is updating its forward-looking load growth assumptions and respective transmission analysis as part of its Just Transition Solicitation based upon higher load growth forecasts, which are discussed in more detail in that proceeding and its associated transmission study report.



# **B.** POWER FLOW CASE DEVELOPMENT

The Company centered its transmission study on several scenario analyses, with five scenarios categorized by year given the range of anticipated generation in-service dates (2025 Peak Demand, 2026 Peak Demand, 2027 Peak Demand, 2028 Peak Demand, 2030 Peak Demand), and four sensitivities (Twilight Sensitivity, Comanche Area Stress Sensitivity, Pathway Project Sensitivity, and No Cherokee Sensitivity). Due to the varying commercial operation dates of each generation bids over the four-year period of the 2021 ERP & CEP as well as the implementation of significant transmission topology, the study used multiple WECC approved cases as starting cases to analyze system impacts of the generation changes by year. The following cases were developed and updated to reflect previously planned projects as reported in the Company's latest FERC 890 Transmission Plan. The following cases were developed from the WECC approved cases and were shared with neighboring utilities for topology, load, and generation review. Since Public Service is summer peaking, "Peak Demand" cases for scenario cases.

- 2025 Peak Demand Case
- 2026 Peak Demand Case
- 2027 Peak Demand Case
- 2028 Peak Demand Case

The developed models were evaluated and verified to:

- 1. Contain the latest topology available at the initialization of this study.
- 2. Reflect forecasted load for the respective year and season.
- 3. Reflect forecasted generation retirements and proposed ERP generation.

#### **1. GENERATION DISPATCH**

The following table describes the dispatch of existing and new generation as they are available in the power flow case. This set of thermal generators listed were selected based on their geographical diversity on Public Service's system to provide generation from different directions. The furthest generator from the Metro is located at Comanche. The thermal generation was kept static at the values listed below across each year which was intended to take advantage of the additional new renewable generation and test the networks capability to deliver the added Approved Portfolio generation. It should be noted that wind is used to balance against increases in load. Thus, slight differences exist in wind dispatch between years as load growth increases.

| System                                                            | Solar        |             |             |        | Wind  | Battery |                                                                       |               |
|-------------------------------------------------------------------|--------------|-------------|-------------|--------|-------|---------|-----------------------------------------------------------------------|---------------|
| Operating<br>Scenario                                             |              | CHER-<br>CC | RMEC-<br>CC | FSV-CC | PAWN* | СОМА    |                                                                       | Storage       |
| Gross Peak<br>Demand<br>(Summer Mid-<br>Day, Max<br>Solar)        | 90%<br>Rated | 570         | 200         | 330    | 200   | 450     | Balance<br>Net Load<br>= Gross<br>Load minus<br>(Solar +<br>Fossil)   | 0             |
| Twilight<br>Evening<br>Demand<br>(Summer<br>Evening, No<br>Solar) | 0            | 570         | 200         | 330    | 200   | 450     | Balance<br>Net Load =<br>Gross Load<br>minus<br>(Storage +<br>Fossil) | 100%<br>Rated |

## Table 8 – MODEL DISPATCH VALUES

\*Pawnee is used as the Area swing and will not always be exactly 200 MW due to transmission losses.

#### Peak Demand Case

The Peak Demand dispatch leverages a high amount of solar (90%) and balances the remaining load with the available wind resources while dispatching the thermal units at the values shown in Table 8. These thermal units were selected due to their diverse geographical locations across Public Service's system. Specifically, units to the north, south, and east of the metro along with the selected Denver Metro units. This dispatch is considered a reasonable base level dispatch that utilizes all resources minus battery storage. Battery storage is leveraged in the Twilight Evening Peak Case.

#### **Twilight Evening Peak Case**

The Twilight Case was dispatched to reduce the amount of solar resources, while retaining a high level of load demand. This dispatch conceptualizes a short daylight period with an enduring evening load. In addition, this dispatch could also reflect a day in which there is a lack of solar resources. The Twilight Evening Peak case increases the use of energy storage and balances the reduction in solar resources with wind resources.

#### 2. STRESS DISPATCH SCENARIOS

The following dispatch scenarios were established to stress the system for a variety of system conditions which may arise. This variation in dispatch helps ensure that proposed transmission projects are durable under various worst-case conditions. It should be noted that these stress conditions are unique operating conditions which may or may not arise but are used here to ensure the proposed transmission upgrades are durable and withstand a reasonable stress test.

These additional scenarios were established by modifying the generation dispatch to achieve the desired stress. These stress cases were discussed with Stakeholders at the time of the Study Plan development.



#### **Comanche to Metro Directional Stress**

Given the large amounts of generation near and around the Pueblo area, and to better understand the impacts to the existing 345 kV transmission corridor into the Denver Metro area, generation in proximity to Comanche was increased to produce a high flow on the transmission corridor from south to north into Denver. By doing so, this analysis further evaluates the southern path into the Denver Metro area. Further, this generation stress condition evaluates the addition of portions of the Pathway Project segment that will be in-serviced in 2027. The Company has referred to this part of the system as one of the critical backbone paths into Denver and thus evaluating this path is ensures transmission components are adequately sized as increased power flow travels north from the Comanche area. Projects identified along the Daniels Park Path were shown to experience severe overloads under this stress condition, which is consistent with the expected result.

#### High Renewable Pathway Stress Case

The Pathway Project was developed to accommodate renewable energy resources expected to come online as a result of the 2021 ERP & CEP and beyond. This stress case was developed to emphasize renewable generation coming online *via* the Pathway Project by increasing the proposed portfolio of generation located on the Pathway Project. This generation stress case was designed to identify potential issues with large amounts of injections on the Pathway Project and to identify potential issues on the network as power traverses the network to load centers across the southern and eastern path into the Denver Metro area. Projects identified along the Smoky Hill Path were shown to experience severe overloads under this condition, which also provides a consistent result that aligns with the expected result.

#### No Cherokee Case

The "No Cherokee" case was proposed by Stakeholders as an additional stress case. The absence of Cherokee generation presents a challenge that has been shown in other studies as well as in real-time operations, which has led to the existing Denver Metro constraint - posted to the Company's OASIS site and referred to as the "East Generation and South Generation Nomogram"<sup>7</sup>. This stress case has been used to inform and understand how the proposed transmission network upgrades endure this extreme dispatch case. The Cherokee generation provides significant counterflow on Denver Metro lines as well as voltage support in this critical area. Though the Company may not operate this system in this configuration, the analysis is revealing to better understand Cherokee's criticality on the network system performance. Projects presented in this Study Report are not driven by this extreme dispatch case.

#### 3. FUTURE GENERATION SCENARIOS

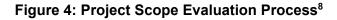
The following scenarios were evaluated within this study as a forward-looking analysis to identify constraints that may arise beyond 2028.

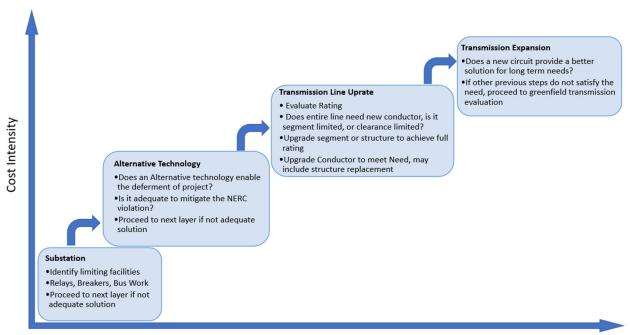
<sup>7</sup> <u>https://www.oasis.oati.com/woa/docs/PSCO/PSCOdocs/MSST-PSCO\_PSCo.South-PSCo\_Nomogram\_June\_7\_2024.pdf</u>



#### 2030 Clean Energy Plan

The 2030 Clean Energy Plan contemplates an additional 1000 MW generic wind by the end of 2029. The Company used informed engineering assumptions for generation location and size.


#### Just Transition Solicitation


The Company's JTS filing will focus on replacing the Comanche Unit 3, meeting 2030 emissions reduction requirements, and meeting the Company's resource needs through 2031. This evaluation built upon the Clean Energy Plan Scenario with an additional 3850 MW of generation. This analysis is indicative and does not serve as the final analysis. Further study will be presented in the Company's Phase 1 JTS Filing in October of 2024.



# **C. PROJECT SELECTION PROCESS**

The Company's decision-making process for the selection of preferred alternatives is structured to begin with the most minimally invasive solution with regard to both scope and cost and scale up to major transmission expansions as necessary, as reflected in Figure 4 below.





Complexity

This method ensures that immediate needs are effectively met while also taking into account longterm goals and cost-effectiveness. The progression from minor to major solutions is driven by careful analysis, iterative evaluation, professional experience and judgment, and strategic insight.

To explain, initially, Transmission Planning begins by identifying the simplest, most cost-effective solutions to address a given transmission violation. In some cases, limitations are located at the substation with facilities that are electrically "in series" with the transmission segment and have an electrical current carrying capacity less than the transmission line. In this scenario, additional capacity can be unlocked through technical upgrades to facilities or conductor. The Company then re-evaluates the potential solution in its power flow model to ensure its adequate in every test case. These minimally invasive solutions are designed to provide additional capacity with lower financial investment than, say, constructing a new transmission line. Through the study process these technical solutions are evaluated to assess their performance and durability across different dispatch cases and load profiles.

When a minimally invasive solution is found to be inadequate or reach its limits, that project is reassessed as a candidate for a more significant solution. This moves the selection process from

<sup>&</sup>lt;sup>8</sup> Examples in the figure are provided to illustrate the process and are not all inclusive.



the first step to the next incremental step as reflected in Figure 4 above, which includes evaluation of potential ATT solutions. At this point in the study, the Company's power flow analyses have identified how severe an overload may be such that we can better understand what may be needed to mitigate the violation. For example, after an initial screening of study results, it can be determined that a device is 110% overloaded under the worst-case contingency thus allowing the planner to calculate how much more capacity is needed after evaluating multiple stress scenarios. With these calculations in hand, ATTs can be compared to determine whether their capabilities align with the system needs. Additional discussion regarding ATTs is presented in Section D below.

Next, our team evaluates the existing transmission topology and physical construction to ensure a cost-effective solution is not overlooked. In some cases, an entire transmission segment may be limited by a physical clearance issue or a portion of the line retaining a conductor with a lower rated capacity. The Company's Transmission Line Engineering team is deployed to determine if an opportunity exists to remedy the limitation. Prior to advancing to structure replacements, an evaluation is done on whether an ATT conductor could save costs of structure replacements.

Arriving at the most complex and robust solution for any violation does not happen without the exhaustive evaluation of the prior steps. The Company understands that these project types can have significant impacts to the communities served. Therefore, greenfield transmission expansions are ideally designed to mitigate multiple network violations and include multi-level value benefits such as renewable energy delivery, rebuild or multi-project avoidance, and improved distribution and transmission load serving capability. The figure above is intended to reflect the multi-stage evaluation process the Company used to evaluate potential transmission solutions within this Report.

ERP PHASE II TRANSMISSION STUDY



# **D.** ADVANCED TRANSMISSION TECHNOLOGIES

As the transmission violations were identified, the Company holistically evaluated ATTs to determine whether ATTs may provide a feasible and cost-effective solution to addressing transmission system needs. The Company considered a broad range of ATTs including High-Temperature, Low-Sag ("HTLS") conductor types and other Grid Enhancing Technologies ("GETs").

The predominant system issues that need to be solved for with the addition of the Approved Portfolio include the increase in electric flow from the south at Daniels Park and from the east at Smoky Hill. Accordingly, the Company's Transmission Planning team evaluated whether ATTs or GETs could provide robust solutions in any instances to reliably mitigate violations along those paths. Consistent with the terms of the Settlement Agreement approved by the Commission in Proceeding No. 21A-0096E, this Report provides a detailed explanation of each ATT considered. Below is a summary of how each technology was evaluated.

#### 1. ENERGY STORAGE

Energy Storage has been shown to leverage the concept of counter-flow, which can help alleviate an overload by injecting power into a specific bus to "push back" on flows which may experience an overload in certain situations, such as times of high renewable generation being injected onto the transmission system. The concept can work in some situations, but carries risk depending on the state of charge of the storage device and duration of output. Given that transmission outages can cause overloads that can be detrimental to asset health and are compounded by generator dispatch, it is difficult to rely on a battery, which could have a wide spectrum of charge level. These variables ultimately limit the situations where energy storage can reliably mitigate many transmission violations.

A critical resource in evaluating Energy Storage throughout this study process was "A Guide to Evaluating Energy Storage Alternatives" as developed by the Colorado Coordinated Planning Group ("CCPG") Energy Storage Work Group, which was accepted by CCPG members in June of 2023.<sup>9</sup> Energy Storage was considered throughout this study process and as part of all mitigation solutions, however, it was not determined to be a feasible alternative to address any of the system needs identified in this Study Report. A key concept outlined in the document under the feasibility section states, "[i]f the purpose and need of a project is to address an anticipated NERC Reliability Standard violation, certain types of ESAs are not feasible. Energy storage is currently not a feasible solution to address these violations as the availability of energy and ability to mitigate the issue cannot be guaranteed." As such, any overloads caused by a contingency event cannot be resolved through the deployment of energy storage.

#### 2. TRANSMISSION TOPOLOGY OPTIMIZATION

The concept of transmission optimization seeks to find a reconfiguration option or route around a particular congested or overloaded facility. While this action of topology reconfiguration in and of itself is not an ATT per se, as this is often done by transmission system operators, when paired with the appropriate software designed to run multiple outage configurations and combinations, this can offer advanced optimization that may result in capacity benefits. Optimization software can account for the system configuration in near real time, to include de-energized facilities which may be out for maintenance or construction, then optimize the configuration based on a number

<sup>&</sup>lt;sup>9</sup> <u>https://doc.westconnect.com/Documents.aspx?NID=21026</u>



of iterative solutions. Here, the Company evaluated the potential deployment of topology optimization combined with appropriate software, but determined that with respect to the violations at issue here and the magnitude of capacity overloads, it was determined that topology optimization did not provide sufficient capacity needed to mitigate the transmission violations.

#### 3. DYNAMIC LINE RATING

Dynamic Line Ratings are transmission line ratings that reflect up-to-date forecasts of weather conditions, such as ambient air temperature, wind, cloud cover, solar heating, and precipitation, in addition to transmission line conditions such as tension or sag. There can be significant benefit to dynamically rating a transmission line to unlock additional capacity. Conversely, as line ratings take into account the above-mentioned weather parameters the rating can also be reduced for such conditions such as high ambient temperatures or solar heating. As such, due to the functional dependency of real time weather metrics on the dynamic line rating, the benefit of this technology is more suited for use within the operational timeframe rather than the long-term planning horizon where having available capacity to deliver is critical regardless of daily weather metrics. The Company continues to evaluate a variety of dynamic line rating technologies and is working to implement the systems upgrades necessary to operationalize dynamic line ratings. However, facilities that have ratings limited by certain underground conductors or substation equipment, such as many facilities in the Denver Metro area, do not benefit from these technologies.

#### 4. ADVANCED TRANSMISSION CONDUCTORS

Advanced transmission conductors are conductors which offer an increase in capacity, efficiency and mechanical performance compared to traditional conductors compared to traditional aluminum conductor, steel reinforced ("ACSR") cables and are sometimes referred to as hightemperature, low-sag composite ("HTLS") conductors. More information about advanced conductors is available in the Advanced Conductor Scan Report published by the Idaho National Lab.<sup>10</sup> For all projects that require an existing transmission line to be uprated, the Company's Transmission Engineering organization has considered whether an HTLS conductor technology would be suitable. The selection of a specific conductor type is not necessarily within the scope of this Study Report; however, the transmission planning process considers the capabilities of advanced conductors in determining whether an upgrade to an existing transmission path is a feasible alternative.

#### 5. Advanced Power Flow Control

A product that was considered but not included in the Transmission Network Improvement Projects is advanced power flow control technology. Power flow control is a set of technologies that can push or pull power to and away from potentially overloaded transmission lines. While this technology did appear to mitigate the transmission violations by modifying the inductance or capacitance of the line to synthesize a capacitive or inductive reactance to either push or pull power, further analysis determined it was not cost-effective, particularly in comparison to a traditional series reactor. Through engineering evaluation, it was determined that this technology requires ancillary equipment and physical space along the existing right of way, that would increase project costs and expand the scope.

<sup>&</sup>lt;sup>10</sup> <u>https://www.energy.gov/sites/default/files/2024-</u>

<sup>08/</sup>Advanced%20Conductor%20Report%20December%202023.pdf



#### 6. SUPPLEMENTAL ALTERNATIVES EVALUATED

There are several other ATT concepts that may help to mitigate transmission violations, such as testing if power can be rerouted away from overloaded areas by permanently reconfiguring transmission terminations or evaluating if loads can be balanced along congested paths to avoid a violation. The Company studied several such options.

For example, several different configurations were tested early in the process at the Daniels Park Substation to understand if adding or removing a line at Daniels Park could provide another path into the Denver Metro area and lessen the impact on the Daniels Park to Greenwood lines. Results indicated that the power flow will seek to continue into the Daniels Park due to the amount of concentrated load in that area. In addition, the concept was further evaluated with an additional conceptual circuit to reduce impedance further, yet that test did not improve the previous results and the concept was set aside.

Load balancing was evaluated on the eastern path of the Denver Metro area to test if any of the identified violations could be avoided by re-arranging load along that path. For example, a project to shift load served by the Tollgate Substation to a different adjacent transmission line was initially evaluated. However, due to the violation appearing again in later case years, this load shift alternative was determined not to be durable and did not meet the Company's desire to implement a robust transmission solution for long-term needs. Thus, uprating the line through a reconductoring project was determined as the preferred alternative.

Additionally, the Company did take into account the northern part of the Denver Metro area through its analysis. One such evaluation included an additional conceptual line to determine if there was any benefit added by providing another path into Cherokee from Fort St. Vrain in the north. The concept was centered on the idea that added flow into Cherokee could potentially help support counter flow similar to the current benefit of Cherokee's generation output. Even with the addition of PSTs to the Pathway Project between Canal Crossing and Fort St. Vrain, there was not enough flow making its way into the Denver Metro area and past Cherokee to have a positive impact on the transmission violations to the south and east of the Denver Metro area.

Finally, an informal assessment was made to determine what amount if any would reduce the number of transmission violations should more generation be made available on the northern side of the Denver Metro area. This assessment confirmed that there is a positive relationship between generation at or north of Cherokee substation and transmission issues on the south and east of the metro area. This is often referenced as the counter-flow generation with regard to Cherokee's output.



# E. PROJECT DESIGN

Through this Study Report, the Company presents the results of its analysis of the electrical engineering of the bulk power system to identify the need for system expansion to reliably deliver the Approved Portfolio. However, this Study Report does not encompass all steps necessary for the development and construction of a transmission project including the design, siting, engineering specifications, local and public outreach and engagement, and construction plans. Below the Company briefly describes some of these constructability issues the Transmission Network Improvement Projects, all of which could impact the feasibility, timeline, scope, and costs of the projects identified herein.

#### 1. FEASIBILITY & RISK

Once a preferred transmission solution is identified through the transmission planning process, many other necessary steps remain before such a transmission solution can ultimately be developed, such as siting, transmission line and substation design engineering, constructability and risk analysis, and the development and implementation of project management and execution plans. In support of the further development of the Transmission Network Improvement Projects, the Company's Integrated System Planning organization is developing preliminarily scope, feasibility, estimated cost, and schedule consistent with Public Service's Project Planning and Execution Process ("PPEP"). The PPEP is intended to ensure a project is feasible, determine constructability, and to identify any practical implementation constraints or challenges, such as project risks, and lead time for materials.

Such an assessment will identify issues that could render a planning-identified solution infeasible, such as physical space limitations at substation sites. For example, significant time was spent to determine the best location for the additional transformer at Daniels Park within the existing boundary of the substation site. Through an iterative scrub process and working sessions, an adequate location was identified.

Each of the Projects identified in this Study Report have been evaluated through the initial stages of the PPEP and have been determined to be feasible based on this preliminary investigation. While some project alternatives discussed in this Study Report were considered on a qualitative basis and were eliminated from consideration, in situations where more than one viable electrical solution was identified and validated by the Transmission Planning process the Company conducted further preliminary investigation into feasibility, cost, and constructability to guide the selection of the preferred alternative. Though the Company evaluates each project individually, the risk remains that projects may change or be modified based on outside factors that are unknown at the time of initial engineering estimate. The PPEP is designed to manage and reduce the amount of risk within each project.

When this preliminary project scope, schedule and estimate are completed, the Company intends to seek a Certificate of Public Convenience and Necessity from the Colorado Public Utilities Commission to construct the Projects.

#### 2. PROJECT SCHEDULE AND IN-SERVICE DATES

This planning analysis evaluates constrained thermal generation paired with a high renewable generation dispatch to meet the Company's clean energy goals. Projects identified through the incremental study horizon are reflected in the year in which they are first identified. Due to the complexity and long lead times of material, many upgrades in the Transmission Network



Improvement Projects may not be placed in service until later in the Resource Acquisition Period of the 2021 ERP & CEP. This does not reflect a lack of system reliability, but rather a limitation to the amount of renewable generation that may be accommodated during Project buildout. The Company continues to evaluate the construction schedule to properly sequence outages required to safely construct and implement the Transmission Network Improvement Projects in a way that is safe, reliable, and adds value for customers. At this time, the Company has not finalized the development of construction schedules in-service dates for the Transmission Network Improvement Projects as part of its upcoming CPCN filing.

#### 3. COST ESTIMATES

Given the complexity of the Transmission Network Improvement Projects, the Company is still in the process of developing refined cost estimates for these Projects. In addition to the materials, supplies, and labor needed to support this portfolio, the Company's cost estimates must take into account the complex outage coordination that will be needed to support this work, along with the unique siting, land rights, and permitting aspects of the Projects. The Company is also evaluating the most cost-effective way to proceed with this work, including, for instance, what portions may be suited for development and construction by third-party contractors.

At this time, the Company has not completed the development of refined cost estimates for the Transmission Network Improvement Projects but will present detailed cost estimates for the Projects as part of its upcoming CPCN filing.

| #  | Fuel Type          | Nameplate<br>Capacity<br>(MW) | Collocated<br>Storage<br>(MW) | Point of Interconnection                       | Estimated<br>In-Service<br>Date |
|----|--------------------|-------------------------------|-------------------------------|------------------------------------------------|---------------------------------|
| 1  | Solar +<br>Storage | 325                           | 200                           | Comanche 230kV Substation                      | Oct 2025                        |
| 2  | Wind               | 500                           |                               | Goose Creek Substation                         | Dec 2025                        |
| 3  | Wind               | 500                           |                               | May Valley Substation                          | Feb 2026                        |
| 4  | Wind               | 450                           |                               | Goose Creek Substation                         | Mar 2026                        |
| 5  | Gas                | 50                            |                               | Alamosa Substation - 69kV bus                  | Mar 2026                        |
| 6  | Wind               | 603                           |                               | Goose Creek Substation                         | May<br>2026                     |
| 7  | Solar              | 115                           |                               | 230 kV Poncha-SLV line                         | June<br>2026                    |
| 8  | Storage            | 199                           |                               | St Vrain 345kV                                 | Aug 2026                        |
| 9  | Solar              | 335                           |                               | Comanche 230 kV Substation                     | Sept<br>2026                    |
| 10 | Storage            | 199                           |                               | Spindle 230kV                                  | Nov 2026                        |
| 11 | Solar +<br>Storage | 355                           | 178                           | PSCo trx line between Missile &<br>Pawnee Subs | Mar 2027                        |
| 12 | Storage            | 200                           |                               | Comanche PSCo 345 kV                           | May<br>2027                     |
| 13 | Gas                | 200                           |                               | Fort Lupton 115 KV substation                  | May<br>2027                     |
| 14 | Gas                | 200                           |                               | Fort St. Vrain 230 KV substation               | May<br>2027                     |
| 15 | Solar +<br>Storage | 90                            | 72                            | Alamosa Terminal - Blanca Peak -<br>115kV line | May<br>2027                     |
| 16 | Storage            | 200                           |                               | Hartsel 230kV substation                       | Dec 2027                        |
| 17 | Solar              | 200                           |                               | PSCo's Mirasol 230kV Switchyard                | June<br>2028                    |
| 18 | Solar +<br>Storage | 300                           | 100                           | New 230kV Switchyard on Boone-<br>Midway line  | June<br>2028                    |
| 19 | Storage            | 250                           |                               | Goose Creek 345kV Substation                   | June<br>2028                    |
| 20 | Storage            | 250                           |                               | Pawnee 345KV Substation                        | June<br>2028                    |

# Appendix B 2021 ERP & CEP Transmission System Impact Study Page 1 of 10

| 2025                                                                                                                                                                                                    |                  | Pre Miti             | gation                 | Р              | ost Mitigatio       | n                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|------------------------|----------------|---------------------|------------------|
| <>                                                                                                                                                                                                      | Peak             | Comanche<br>Stress   | No Cherokee            | Peak           | Comanche<br>Stress  | No Cherokee      |
| 70108 CHEROKEE_S 115.00 70277 MAPLETO2 115.00 1                                                                                                                                                         | 126.12           | 117.57               | 60.57                  | 78.48          | 72.25               | 27.43            |
| 70398 BEAVER_CK_N 115.00 70399 BEAVER_CRK_P230.00 T1                                                                                                                                                    | 85.31            | 70.96                | 115.74                 | 84.48          | 70.36               | 115.77           |
| 70277 MAPLETO2 115.00 70377 SANDOWN 115.00 1                                                                                                                                                            | 105.52           | 97.11                | 38.86                  |                | APLETO2 to NEW_SUB_ |                  |
| 70423 BOULDER_CAN1115.00 70492 BOULDER_HYD 115.00 1                                                                                                                                                     | 101.57           | 100.47               | 99.92                  | 99.95          | 99.51               | 99.15            |
| 70045 BANCROFT 115.00 70208 GRAY_STREET 115.00 1                                                                                                                                                        | 100.27           | 100.5                | 87.24                  | 85.4           | 85.24               | 74.28            |
| 70148 DENVER_TRM_1115.00 70208 GRAY_STREET 115.00 1                                                                                                                                                     | 130.73           | 123.57               | 72.49                  | 93.09          | 89.45               | 53.52            |
| 70023 ALLISON 115.00 70400 SODA_LAKES 115.00 1                                                                                                                                                          | 101.56           | 103.44               | 99.73                  | 98.55          | 99.76               | 99.46            |
| 70045 BANCROFT 115.00 70242 KENDRICK 115.00 1                                                                                                                                                           | 97.66            | 97.6                 | 98.02                  | 97.88          | 97.6                | 97.28            |
| 70108 CHEROKEE_S 115.00 70298 NORTH_PS 115.00 1                                                                                                                                                         | 97.52            | 91.3                 | 49.54                  | 58.19          | 56.2                | 44.14            |
| 70538         CHAMBERS         115.00         70539         CHAMBERS         230.00         T1           70538         CHAMBERS         115.00         70539         CHAMBERS         230.00         T2 | 105.25<br>105.25 | 107.25<br>107.25     | 107.11<br>107.11       | 98.48<br>98.48 | 101.23<br>101.23    | 104.88<br>104.88 |
| 70538         CHAMBERS         115.00         70539         CHAMBERS         230.00         T2           70163         ELATI1         230.00         70291         MONROEPS         230.00         1    | 105.25           | 107.25               | 99.38                  | 98.48          | 33.41               | 25.38            |
| 70183 ELATTI 230.00 70291 MONROEPS 230.00 1<br>70189 GREENWOOD 2 230.00 70212 GREENWOOD 1 230.00 1                                                                                                      | 157.48           | 139.23               | 137.97                 | 73.91          | 69.16               | 67.16            |
| 70260 LEETSDALE 230.00 70291 MONROEPS 230.00 1                                                                                                                                                          | 149.91           | 123.87               | 104.42                 | 49.14          | 40.82               | 32.67            |
| 70365 SULLIVAN 2 230.00 70481 MONACO 12 230.00 1                                                                                                                                                        | 135.68           | 125.61               | 127.02                 | 87.33          | 81.25               | 80.63            |
| 70139 DANIEL PK 230.00 70323 PRAIRIE 3 230.00 2                                                                                                                                                         | 134.47           | 127.64               | 127.02                 | 77.67          | 76.43               | 71.54            |
| 70189 GREENWOOD 2 230.00 70481 MONACO 12 230.00 1                                                                                                                                                       | 132.02           | 122.67               | 124.08                 |                | EENWOOD_2 to GREE-S |                  |
| 70087 CAPITOL HILL115.00 70148 DENVER TRM 1115.00 1                                                                                                                                                     | 113.96           | 87.73                | 138.23                 | 66.4           | 64.86               | 132.13           |
| 70260 LEETSDALE 230.00 70365 SULLIVAN 2 230.00 1                                                                                                                                                        | 122.88           | 112.56               | 113.77                 | 72.8           | 66.18               | 65.26            |
| 70189 GREENWOOD 2 230.00 70323 PRAIRIE 3 230.00 1                                                                                                                                                       | 122.81           | 116.34               | 112.76                 | 72.45          | 71.34               | 66.45            |
| 70285 MIDWAY PS 115.00 70286 MIDWAYPS 230.00 T1                                                                                                                                                         | 119.64           | 73.56                | 54.44                  | 115.87         | 72.39               | 53.51            |
| 70046 BUCKLEY2 230.00 70396 SMOKY_HILL 230.00 1                                                                                                                                                         | 120.05           | 110.15               | 113.05                 | 72.33          | 66.51               | 67.41            |
| 70046 BUCKLEY2 230.00 70491 TOLLGATE 230.00 1                                                                                                                                                           | 118.57           | 108.82               | 111.7                  | 72.34          | 66.53               | 67.43            |
| 70215 HARRISON_PS1115.00 70282 LEETSDALE_2 115.00 1                                                                                                                                                     | 108.43           | 102.91               | 146.52                 | 45.14          | 40.65               | 50.04            |
| 70217 HAVANA2 115.00 70538 CHAMBERS 115.00 2                                                                                                                                                            | 110.48           | 108.07               | 107.56                 | 96.86          | 96.42               | 103.64           |
| 70149 DENVER_TERM 230.00 70163 ELATI1 230.00 1                                                                                                                                                          | 118.07           | 84.07                | 75.8                   | 32.94          | 26.19               | 34.14            |
| 70216 HAVANA1 115.00 70538 CHAMBERS 115.00 1                                                                                                                                                            | 108.42           | 105.92               | 105.38                 | 94.09          | 93.58               | 101.2            |
| 70139 DANIEL_PK 230.00 70331 PRAIRIE_1 230.00 1                                                                                                                                                         | 108.37           | 106.2                | 100.18                 | 77.22          | 76.08               | 71.19            |
| 70139 DANIEL_PK 230.00 70601 DANIEL_PK 345.00 T3                                                                                                                                                        | 105.19           | 99.79                | 94.63                  | 82.05          | 78.34               | 74.42            |
| 70139 DANIEL_PK 230.00 70601 DANIEL_PK 345.00 T4                                                                                                                                                        | 105.19           | 99.79                | 94.63                  | 82.05          | 78.34               | 74.42            |
| 70139 DANIEL_PK 230.00 70601 DANIEL_PK 345.00 T5                                                                                                                                                        | 105.19           | 99.79                | 94.63                  | 82.05          | 78.34               | 74.42            |
| 70037 ARAPAHOE_B 115.00 70038 ARAPAHOE 230.00 T5                                                                                                                                                        | 101.55           | 109.01               | 101.81                 | 89.19          | 96.61               | 89.03            |
| 70239 JEWELL2 230.00 70491 TOLLGATE 230.00 1                                                                                                                                                            | 99.8             | 90.08                | 92.74                  | 61.2           | 55.23               | 56               |
| 70463 WATERTON 115.00 70483 WATERTN_TP 115.00 1                                                                                                                                                         | 97.9             | 98.24                | 93.18                  | 83.96          | 83.42               | 81.72            |
| 70208 GRAY_STREET 115.00 70252 LAKEWOOD_2 115.00 2                                                                                                                                                      | 97.87            | 88                   | 54.04                  | 85.91          | 77.94               | 53.48            |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T4                                                                                                                                                      | 96.5<br>96.5     | 78.91<br>78.91       | 78.78<br>78.78         | 90.33<br>90.33 | 73.16<br>73.16      | 73.67<br>73.67   |
| 70396         SMOKY_HILL         230.00         70599         SMOKY_HILL         345.00         T5           70112         CLARK         230.00         70241         JORDAN         230.00         1   | 96.5             | 79.91                | 87.42                  | 71.48          | 59.72               | 65.68            |
| 70208 GRAY STREET 115.00 70251 LAKEWOOD 1 115.00 1                                                                                                                                                      | 95.95            | 86                   | 48.4                   | 84.16          | 75.96               | 47.81            |
| 70212 GREENWOOD_1230.00 70331 PRAIRIE_1 230.00 2                                                                                                                                                        | 96.06            | 94.26                | 88.2                   | 69.76          | 68.79               | 63.86            |
| 70192 FORT LUPTON 230.00 70311 PAWNEE 230.00 1                                                                                                                                                          | 88.22            | 69.25                | 76.72                  | 78.94          | 68.1                | 75.87            |
| 70126 CONOCO 115.00 70377 SANDOWN 115.00 1                                                                                                                                                              | 93.77            | 85.8                 | 49.99                  |                | CONOCO to NEW SUB   |                  |
| 70110 CHEROKEE N 115.00 70174 FEDERHT23 115.00 1                                                                                                                                                        | 92.15            | 87.41                | 66.21                  | 62.1           | 59.16               | 40.22            |
| 70599 SMOKY_HILL 345.00 70624 MISS_SITE 345.00 1                                                                                                                                                        | 88.74            | 56.88                | 65.23                  | 77.24          | 56.96               | 65.28            |
| 70239 JEWELL2 230.00 70260 LEETSDALE 230.00 1                                                                                                                                                           | 90.09            | 80.12                | 82.64                  | 54.8           | 48.64               | 49.31            |
| 70208 GRAY_STREET 115.00 70402 SOUTH 115.00 1                                                                                                                                                           | 89.44            | 92.82                | 50.72                  | 90.51          | 95.67               | 52.4             |
| 70036 ARAPAHOE_A 115.00 70037 ARAPAHOE_B 115.00 1                                                                                                                                                       | 86.82            | 90.33                | 79.19                  | 69.84          | 70.59               | 64.98            |
| 70144 DENVER_TRM_2115.00 70148 DENVER_TRM_1115.00 1                                                                                                                                                     | 68.5             | 78.7                 | 120.57                 | 68.84          | 77.13               | 106.92           |
| 70107 CHEROKEE 230.00 70108 CHEROKEE_S 115.00 T1                                                                                                                                                        | 84.19            | 67.49                | 92.37                  | 55.65          | 47.87               | 73.11            |
| 70038 ARAPAHOE 230.00 70189 GREENWOOD_2 230.00 1                                                                                                                                                        | 89.4             | 82.53                | 79.96                  | 95.19          | 88.84               | 83.88            |
| 70481 MONACO_12 230.00 770189 GREE-SR 230.00 1                                                                                                                                                          |                  |                      | .00 to MONACO_12 entry | 87.41          | 81.88               | 81.42            |
| 70037 ARAPAHOE_B 115.00 70401 SOUTH_TAP 115.00 1                                                                                                                                                        | 78.85            | 81.85                | 83.36                  | 97.17          | 96.19               | 94.91            |
| 70036 ARAPAHOE_A 115.00 70531 AIR_LIQ_TP 115.00 1                                                                                                                                                       | 88.85            | 84.95                | 87.65                  | 98.67          | 95.21               | 100.17           |
| 70036 ARAPAHOE_A 115.00 70441 UNIVERS1 115.00 1                                                                                                                                                         | 56.14            | 56.18                | 87.63                  | 63.66          | 66.47               | 98.32            |
| 70277 MAPLETO2 115.00 770277 NEW_SUB_A 115.00 1                                                                                                                                                         | ļ                | Refer to MAPLETO2 to |                        | 67.85          | 61.62               | 19.79            |
| 70189 GREENWOOD_2 230.00 770189 GREE-SR 230.00 2                                                                                                                                                        | Refer to         |                      | .00 to MONACO_12 entry | 87.41          | 81.88               | 81.41            |
| 70126 CONOCO 115.00 770277 NEW_SUB_A 115.00 1                                                                                                                                                           | L                | Refer to CONOCO to   | SANDOWN entry          | 68.51          | 62.66               | 37.33            |

| 2026                                                                                                                                                                                                        | Pre Mitigation  |                  |                    |                                        | Post Mitigation  |                |                |                            |                      |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|--------------------|----------------------------------------|------------------|----------------|----------------|----------------------------|----------------------|----------------|
| <>                                                                                                                                                                                                          | Peak            | Twilight         | Comanche<br>Stress | Pathway<br>Stress                      | No<br>Cherokee   | Peak           | Twilight       | Comanche<br>Stress         | Pathway Stress       | No Cherokee    |
| 70108 CHEROKEE_S 115.00 70277 MAPLETO2 115.00 1                                                                                                                                                             | 112.64          | 116.13           | 120.03             | 136.48                                 |                  | 81.38          | 81.63          | 74.79                      | 80.99                | 32.6           |
| 70045 BANCROFT 115.00 70208 GRAY_STREET 115.00 1                                                                                                                                                            | 100.94          | 104.13           | 98.77              | 102.7                                  | 93.8             | 87.83          | 93.22          | 86.19                      | 90.28                | 81.06          |
| 70148         DENVER_TRM_1115.00         70208         GRAY_STREET 115.00 1           70189         GREENWOOD 2 230.00         70212         GREENWOOD 1 230.00 1                                           | 118.09          | 120.82<br>132.29 | 121.94             | 126.89<br>140.01                       | 109.55<br>163.37 | 87.86          | 95.58<br>64.59 | 87.65<br>75.38             | 92<br>69.17          | 70.36          |
| 70189         GREENWOOD_2 230.00         70212         GREENWOOD_1 230.00 1           70087         CAPITOL_HILL115.00         70148         DENVER_TRM_1115.00 1                                           | 137.35<br>97.33 | 132.29           | 86.78              | 140.01                                 | 163.37           |                |                | Open 75.38                 |                      |                |
| 70023 ALLISON 115.00 70400 SODA_LAKES 115.00 1                                                                                                                                                              | 98.98           | 97.98            | 106.78             | 103.64                                 | 109.61           | 96.36          | Open 97.34     | 98.56                      | Open<br>97.59        | Open 96.49     |
| 70139 DANIEL_PK 230.00 70323 PRAIRIE_3 230.00 2                                                                                                                                                             | 122.91          | 113.09           | 143.03             | 125.29                                 |                  | 68.68          | 61.73          | 83.73                      | 69.84                | 77.76          |
| 70045 BANCROFT 115.00 70242 KENDRICK 115.00 1                                                                                                                                                               | 97.55           | 97.87            | 97.24              | 97.12                                  | 100.02           | 97.56          | 97.42          | 97.69                      | 97.82                | 96.91          |
| 70538 CHAMBERS 115.00 70539 CHAMBERS 230.00 T1                                                                                                                                                              | 91.84           | 91.37            | 91.61              | 90.78                                  | 98.61            | 83.26          | 85.92          | 84.21                      | 85.35                | 96.28          |
| 70538 CHAMBERS 115.00 70539 CHAMBERS 230.00 T2                                                                                                                                                              | 91.84           | 91.37            | 91.61              | 90.78                                  | 98.61            | 83.26          | 85.92          | 84.21                      | 85.35                | 96.28          |
| 70139         DANIEL_PK         230.00         70601         DANIEL_PK         345.00         T3           70139         DANIEL_PK         230.00         70601         DANIEL_PK         345.00         T4 | 109.9<br>109.9  | 99.22<br>99.22   | 120.07<br>120.07   | 110.24<br>110.24                       | 117.18<br>117.18 | 83.77          | 75.54<br>75.54 | <u>91.43</u><br>91.43      | 83.97<br>83.97       | 88.53<br>88.53 |
| 70139 DANIEL_PK 230.00 70601 DANIEL_PK 345.00 14<br>70139 DANIEL_PK 230.00 70601 DANIEL_PK 345.00 T5                                                                                                        | 109.9           | 99.22            | 120.07             | 110.24                                 |                  | 83.77          | 75.54          | 91.43                      | 83.97                | 88.53          |
| 70444 VALMONT_1 115.00 70447 VALMONT 230.00 T8                                                                                                                                                              | 84.48           | 85.68            | 83.45              | 84.49                                  |                  | 75.41          | 77.05          | 73.6                       | 75                   | 85.99          |
| 70440 VALMONT_2 115.00 70447 VALMONT 230.00 T7                                                                                                                                                              | 83.82           | 85.2             | 82.64              | 83.83                                  | 93.17            | 74.86          | 77.01          | 73.06                      | 74.72                | 85.82          |
| 70277 MAPLETO2 115.00 70377 SANDOWN 115.00 1                                                                                                                                                                | 91.67           | 95.04            | 98.87              | 115.36                                 | 41.33            |                |                | MAPLETO2 to NEW_           |                      |                |
| 70365 SULLIVAN_2 230.00 70481 MONACO_12 230.00 1                                                                                                                                                            | 123.76          | 119.11           | 137.71             | 126.18                                 | 150.25           | 79.89          | 75.81          | 89.82                      | 81.67                | 96.49          |
| 70265 LOOKOUT_1 115.00 70266 LOOKOUT 230.00 T1                                                                                                                                                              | 51.57           | 55.7             | 50.73              | 52.53                                  | 63.2             | 50.36          | 54.5           | 50.93                      | 52.08                | 65.09          |
| 70189         GREENWOOD_2 230.00         70323         PRAIRIE_3         230.00 1           70260         LEETSDALE         230.00         70365         SULLIVAN 2         230.00 1                        | 111.8<br>111.16 | 101.93<br>105.88 | 131.69<br>125.78   | 114.02<br>113.51                       | 131.3<br>139.06  | 63.69<br>65.37 | 56.64<br>60.83 | 78.72                      | 64.76<br>67          | 72.75          |
| 70046 BUCKLEY2 230.00 70396 SMOKY HILL 230.00 1                                                                                                                                                             | 111.16          | 105.88           | 125.78             | 113.51                                 | 139.06           | 65.37          | 69.37          | 75.61                      | 69.63                | 79.88          |
| 70046 BUCKLEY2 230.00 70491 TOLLGATE 230.00 1                                                                                                                                                               | 109.83          | 112.33           | 115.75             | 113.14                                 | 131.75           | 68.11          | 69.38          | 71.03                      | 69.63                | 79.88          |
| 70217 HAVANA2 115.00 70538 CHAMBERS 115.00 2                                                                                                                                                                | 97.1            | 98.33            | 100.37             | 98.85                                  | 115.32           | 85.36          | 88.23          | 89.24                      | 87.68                | 110.97         |
| 70139 DANIEL_PK 230.00 70331 PRAIRIE_1 230.00 1                                                                                                                                                             | 98.73           | 84.99            | 119.08             | 100.09                                 | 110.09           | 68.26          | 57.67          | 83.3                       | 69.4                 | 76.06          |
| 70260 LEETSDALE 230.00 70291 MONROEPS 230.00 1                                                                                                                                                              | 102.95          | 97.63            | 114.89             | 104.88                                 | 116.73           | 45.05          | 43.88          | 49.9                       | 46.51                | 48.31          |
| 70216 HAVANA1 115.00 70538 CHAMBERS 115.00 1                                                                                                                                                                | 94.39           | 95.62            | 97.82              | 96.15                                  | 113.49           | 82.16          | 85.22          | 86.24                      | 84.6                 | 109.14         |
| 70037 ARAPAHOE_B 115.00 70038 ARAPAHOE 230.00 T5                                                                                                                                                            | 108.29          | 101.82           | 104.71             | 111.48                                 |                  | 80.96          |                |                            | 81.61                | 97.32          |
| 70126         CONOCO         115.00         70377         SANDOWN         115.00 1           70244         LAFAYETTE         115.00         70444         VALMONT 1         115.00 1                        | 96.15<br>90.76  | 100.13<br>92.1   | 92.23              | 93.06<br>91.62                         | 46.09<br>90.97   | 89.57          | Refe<br>90.3   | r to CONOCO to NEW<br>89.7 | _SUB_A entry<br>90.3 | 88.67          |
| 70239 JEWELL2 230.00 70491 TOLLGATE 230.00 1                                                                                                                                                                | 90.76           | 92.1             | 91.03              | 91.62                                  | 112.32           | 57.23          | 58.44          | 60.02                      | 58.66                | 69.04          |
| 70149 DENVER_TERM 230.00 70163 ELATI1 230.00 1                                                                                                                                                              | 91.79           | 83.89            | 107.06             | 94.04                                  | 109.79           | 29.06          | 27.38          | 33.63                      | 30.05                | 32.34          |
| 70212 GREENWOOD_1 230.00 70331 PRAIRIE_1 230.00 2                                                                                                                                                           | 86.92           | 72.91            | 107.31             | 88.13                                  |                  | 61.11          | 50.33          | 76.15                      | 62.12                | 68.88          |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T4                                                                                                                                                          | 95.76           | 106.22           | 99.99              | 97.34                                  | 104.79           | 66.86          | 74.87          | 69.46                      | 68.12                | 73.55          |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T5                                                                                                                                                          | 95.76           | 106.22           | 99.99              | 97.34                                  | 104.79           | 66.86          | 74.87          | 69.46                      | 68.12                | 73.55          |
| 70259 LEETSDALE_1 115.00 70282 LEETSDALE_2 115.00 1                                                                                                                                                         | 105.91          | 134.76           |                    | Open                                   | Open             | 56.1           | 57.27          | 70.16                      | 61.56                | 106.85         |
| 70259 LEETSDALE_1 115.00 70260 LEETSDALE 230.00 T4<br>70624 MISS SITE 345.00 70628 PRONGHORN 345.00 1                                                                                                       | 101.95          | 113.39           | 83.92              | 87.28<br>84.4                          | 98.39<br>87.78   | 67.04          | 69.24          | 75.54                      | 71.04                | 99.67<br>87.64 |
| 70624         MISS_SITE         345.00         70628         PRONGHORN         345.00         1           70215         HARRISON_PS1115.00         70282         LEETSDALE_2         115.00         1       | 100.92<br>94.98 | 101.39<br>94.33  | 84.73<br>116.61    | 84.4                                   | 87.78            | 100.71 46.59   | 101.23 44.69   | 84.77<br>50.75             | 84.34<br>46.73       | 73.2           |
| 70463 WATERTON 115.00 70483 WATERTN TP 115.00 1                                                                                                                                                             | 92.17           | 88.12            | 101.2              | 94.59                                  | 107.2            | 80.49          | 80.76          | 86.08                      | 81.58                | 85.96          |
| 70112 CLARK 230.00 70241 JORDAN 230.00 1                                                                                                                                                                    | 88.81           | 107.45           | 76.54              | 91.63                                  | 106.5            | 73.13          | 93.55          | 58.45                      | 75.6                 | 85.93          |
| 70410 FT_ST_VRAIN 230.00 70916 FT_ST_VRAIN 345.00 T7                                                                                                                                                        | 87.93           | 101.03           | 84.57              | 91.35                                  | 98.71            | 86.11          | 99.44          | 82.77                      | 89.69                | 97.01          |
| 70410 FT_ST_VRAIN 230.00 70916 FT_ST_VRAIN 345.00 T8                                                                                                                                                        | 87.93           | 101.03           | 84.57              | 91.35                                  | 98.71            | 86.11          | 99.44          | 82.77                      | 89.69                | 97.01          |
| 70283 MEADOW_HILLS230.00 70396 SMOKY_HILL 230.00 1                                                                                                                                                          | 80.6            | 91.37            | 73.75              | 82.21                                  | 90.71            | 71.19          | 82.67          | 62.97                      | 72.7                 | 78.68          |
| 70259 LEETSDALE_1 115.00 70441 UNIVERS1 115.00 1                                                                                                                                                            | 89.33           | 91.23<br>90.65   | 80.38              | 80.7                                   |                  | 84.42          | 85             | 83.18                      | 84.85<br>68.98       | 77.26          |
| 70260         LEETSDALE         230.00         70282         LEETSDALE_2         115.00         T5           70163         ELATI1         230.00         70291         MONROEPS         230.00         1    | 87.97<br>88.15  | 90.65<br>82.42   | 70.06              | 71.76                                  | 94.12<br>102.01  | 65.07          | 67.22<br>36.61 | 73.39                      | 68.98                | 96.99<br>40.97 |
| 70208 GRAY_STREET 115.00 70402 SOUTH 115.00 1                                                                                                                                                               | 78.66           | 78.95            | 99.99              | 90.02                                  | 94.36            | 84.17          | 84.84          | 42.57<br>86.69             | 84.89                | 96.64          |
| 70108 CHEROKEE_S 115.00 70298 NORTH_PS 115.00 1                                                                                                                                                             | 86.32           | 88.24            | 92.04              | 103.24                                 | 52.84            | 59.5           | 60.55          | 55.7                       | 59.65                | 44.03          |
| 70038 ARAPAHOE 230.00 70189 GREENWOOD_2 230.00 1                                                                                                                                                            | 81.17           | 76.39            | 91.87              | 82.52                                  | 98.43            | 86.3           | 79.9           | 98.42                      | 87.95                | 102.18         |
| 70263 LITTLET1 115.00 70483 WATERTN_TP 115.00 1                                                                                                                                                             | 82.05           | 77.95            | 91.02              | 84.51                                  | 97.09            | 70.44          | 70.68          | 75.98                      | 71.4                 | 75.99          |
| 70036 ARAPAHOE_A 115.00 70037 ARAPAHOE_B 115.00 1                                                                                                                                                           | 85.02           | 82.5             | 90.25              | 85.12                                  | 110.38           | 67.74          | 66.15          | 74.22                      | 69.31                | 81.34          |
| 70144 DENVER_TRM_2115.00 70148 DENVER_TRM_1115.00 1                                                                                                                                                         | 70.27           | 74.42            | 76.81              | 71.77                                  | 131.43           | 74.49          | 84.48          | 78.45                      | 79.34                | 96             |
| 70144 DENVER_TRM_2115.00 70149 DENVER_TERM 230.00 T2<br>70239 JEWELL2 230.00 70260 LEETSDALE 230.00 1                                                                                                       | 61.4<br>82.34   | 62.62<br>84.55   | 60.06              | 58.81<br>84.16                         | 110.04<br>103.35 | 56.56<br>50.94 | 67.65<br>52.14 | 58.13<br>53.61             | 59.54<br>52.32       | 76.17          |
| 70539 SEWELL2 230.00 70200 ELETSALE 230.00 1<br>70599 SMOKY_HILL 345.00 70624 MISS_SITE 345.00 1                                                                                                            | 83.81           | 87.77            | 69.49              | 88.12                                  |                  | 84.83          | 93.24          | 70.66                      | 89.8                 | 95.77          |
| 70037 ARAPAHOE_B 115.00 70401 SOUTH_TAP 115.00 1                                                                                                                                                            | 82.28           | 77.08            | 80.43              | 81.98                                  |                  | 89.96          | 88.63          | 96.6                       | 91.63                | 104.35         |
| 70182 HARRISON_PS2115.00 70215 HARRISON_PS1115.00 1                                                                                                                                                         | 46.5            | 46.13            | 56.58              | 56.38                                  |                  | 61.32          | 57.69          | 67.93                      | 61.07                | 102.63         |
| 70154 DERBY_1 115.00 70216 HAVANA1 115.00 1                                                                                                                                                                 | 73.22           | 74.54            | 76.62              | 74.89                                  | 91.81            | 63.6           | 66.68          | 67.42                      | 65.72                | 90.13          |
| 70036 ARAPAHOE_A 115.00 70531 AIR_LIQ_TP 115.00 1                                                                                                                                                           | 86.63           | 86.99            | 84.93              | 83.96                                  | 74.85            | 91.82          | 89.77          | 95.82                      | 92.87                | 89.72          |
| 70139 DANIEL_PK 230.00 70527 SANTA_FE 230.00 1                                                                                                                                                              | 69.12           | 63.25            | 79.48              | 70.49                                  | 80.34            | 77.44          | 70.69          | 89.13                      | 78.87                | 90.1           |
| 70037 ARAPAHOE B 115.00 70038 ARAPAHOE 230.00 T6                                                                                                                                                            |                 | Defecte Corre    | NOOD 2 222 05 1    |                                        |                  | 80.96          | 80.26          | 84.83                      | 81.61                | 97.32          |
| 70481         MONACO_12         230.00         770189         GREE-SR         230.00         1           70189         GREENWOOD_2         230.00         770189         GREE-SR         230.00         2   |                 |                  |                    | o MONACO_12 entry<br>o MONACO_12 entry |                  | 80.41<br>80.41 | 76.78<br>76.78 | 89.6<br>89.59              | 82.15<br>82.14       | 95.7<br>95.7   |
| 70189 GREENWOOD_2 230.00 //0189 GREE-SK 230.00 2<br>70277 MAPLETO2 115.00 770277 NEW SUB A 115.00 1                                                                                                         |                 |                  | MAPLETO2 to SAN    |                                        |                  | 70.86          | 76.78          | 64.27                      | 70.46                | 23.91          |
| 70126 CONOCO 115.00 770277 NEW_SUB_A 115.00 1                                                                                                                                                               |                 |                  | CONOCO to SANE     |                                        |                  | 69             |                | 64.56                      | 64.35                | 39.66          |
| 70189 GREENWOOD_2 230.00 70481 MONACO_12 230.00 1                                                                                                                                                           | 120.77          | 116.65           | 133.59             |                                        | 145.06           |                |                | REENWOOD_2 230.00          |                      |                |
|                                                                                                                                                                                                             |                 |                  |                    |                                        |                  |                |                |                            |                      |                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2027                                                |        |          | Pre Mitigation |        |             |       |          | Post Mitigation |             |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------|----------|----------------|--------|-------------|-------|----------|-----------------|-------------|-----------------|
| DissEnvorsW1114.0DissDiss/LTableTableTableDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/LDiss/L <t< th=""><th>&lt;&gt;MONITORED_BRANCH&gt;</th><th>Peak</th><th>Twilight</th><th></th><th></th><th>No Cherokee</th><th>Peak</th><th>Twilight</th><th>0</th><th></th><th>No Cherokee</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <>MONITORED_BRANCH>                                 | Peak   | Twilight |                |        | No Cherokee | Peak  | Twilight | 0               |             | No Cherokee     |
| NOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |        |          |                |        |             |       |          |                 |             |                 |
| NOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMENOMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70189 GREENWOOD 2 230 00 70212 GREENWOOD 1 230 00 1 | 152.08 | 142.6    | 166 44         | 156 24 | 174 19      | 79 36 | 74.67    | 87.09           | 81 64       | 88.71           |
| NomeDerived is 10.97 NOV MAPURP 11.001LP 20LP 20LP 20RP 30RP 30RP 30RP 30RP 30RP 30NOMEMARCH 111.00 MAPURP 11.001LP 30LP 30LP 30LP 30RP 30 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>88.97</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |        |          |                |        |             |       |          |                 |             | 88.97           |
| TRUE         SULANC         Date         TAUE         SULANC         Date         PARE         PARE        PARE        PARE <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>37.83</td></t<>                                                                                                                                                                                                    |                                                     |        |          |                |        |             |       |          |                 |             | 37.83           |
| This         Dear.         Total         Dear.         Total         Total         Total         Total         Total         Total         Dear.         Dear. <thd< td=""><td>70045 BANCROFT 115.00 70208 GRAY_STREET 115.00 1</td><td>106.15</td><td>109.26</td><td>104.7</td><td>107.05</td><td>96.71</td><td>82.68</td><td>87.66</td><td>82.26</td><td>85.03</td><td>80.78</td></thd<>                                                               | 70045 BANCROFT 115.00 70208 GRAY_STREET 115.00 1    | 106.15 | 109.26   | 104.7          | 107.05 | 96.71       | 82.68 | 87.66    | 82.26           | 85.03       | 80.78           |
| TOOP         ALSON         115.00         200.40         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50         201.50 <td></td> <td>91.91</td>                                                                                                                               |                                                     |        |          |                |        |             |       |          |                 |             | 91.91           |
| NOT         Abs.J         ILLO         PERA         Abs.J         IDEA         IDEA        IDEA                                                                                                                                                                                                                                                                                                                              |                                                     |        |          |                |        |             | -     |          |                 |             | 86              |
| Node         Bank (Sept. 11.56 79.24 KBARC 11.50.1         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.77         108.74         108.77         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         108.74         10                                                                                                                                                                                                                                     |                                                     |        |          |                |        |             |       |          |                 |             | 103.33          |
| Node         BUCKLY 2200 7009         SMORT NUL 2000 7101         21244         11030         1173         1124         11424         11430         1123         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125         1125                                                                                                                                                                                                                                                                                                            |                                                     |        |          |                |        |             |       |          |                 |             | 104.18<br>101.7 |
| TODY         ORHONE 2.000         TAUE                                                                                                                                                                                                                                                                                                                      |                                                     |        |          |                |        |             |       |          |                 |             | 84.09           |
| Table         Discrit         Table         <                                                                                                                                                                                                                                                                              |                                                     |        |          |                |        |             |       |          |                 |             | 88.86           |
| TO24       LAMARTY II 150 7044       MADWAT JI 1501       M950       M910       M930       M930       M920       M910       M930                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |        |          |                |        |             |       |          |                 |             | 84.11           |
| 70189       GERNWOOD 22000 7922       PARME 1 2000 11       132.47       133.57       139.40       140.45       172.97       POID       BASE       PASE         70440       VALMONT 1 ISO 7047       VALMONT 2 SLOD 701       BASE       98.42       83.24       80.84       PASE       BASE       PASE       PASE <td></td> <td>97.46</td>                                                                                                                                                                                                                                                                   |                                                     |        |          |                |        |             |       |          |                 |             | 97.46           |
| DH44         VALMONT 1         15150         7447         VALMONT 2         15150         74453         84.20         88.20         88.20         88.20         88.20         88.20         88.20         88.20         88.20         88.20         88.20         78.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50         77.50                                                                                                                                                                                                                                                                                    | 70107 CHEROKEE 230.00 70110 CHEROKEE N 115.00 T2    | 69.46  | 91.8     | 93.03          | 93.2   | 67.6        | 54.03 | 57.36    | 63.73           | 78.3        | 91.63           |
| Totale         Value Net Net 21 150 7047         Max 2010         1924         9172         1973         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974      <                                                                                                                                                                                                                                                                                                         | 70189 GREENWOOD_2 230.00 70323 PRAIRIE_3 230.00 1   | 124.72 |          | 139.63         | 127.66 |             | 72.97 | 67.03    | 83.64           | 74.85       | 80.78           |
| 77290         LETEDAL 2300 7021         MONROPE 2300 1021         MONROPE 2300 1021         MONROPE 2300 1         MED         MONROPE 2300 1         MED         MED<                                                                                                                                                                                                                                                                                                                               | 70444 VALMONT_1 115.00 70447 VALMONT 230.00 T8      | 93.93  | 96.42    | 88.42          | 89.08  | 98.73       | 84.92 | 85.32    | 76.56           | 76.42       | 89.07           |
| 72017     HAVANAL 115.07     7030     CMAMBERS     110.703     CMAMBERS     110.703     CMAMBERS     110.703     CMAMBERS     100.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703     110.703                                                                                                                                                                                                                                                                                                                                                    | 70440 VALMONT_2 115.00 70447 VALMONT 230.00 T7      |        |          |                |        |             |       |          |                 |             | 83.44           |
| TOYOD         LIFTNAME         2000         7036         MARKER         S100         98.23         99.23         99.39         66.16           TOSIS         CHAMBERS         S100 TOSIS         MMREK         2000 TOSISIS         MMREK                                                                                                                                                                                                                        |                                                     |        |          |                |        |             |       |          |                 |             | 52.68           |
| T7058         CHAMBES         150.7057         CHAMBES         150.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010         110.7010                                                                                                                                                                                                   |                                                     |        |          |                |        |             |       |          |                 |             | 113.41          |
| TD33         CHAMERS         15.07         CHAMERS         20.07         99.37         99.37         99.14         89.70         88.70         88.85         85.45           70139         DAMLER         23.00         TOBID         MALER         35.00         TOBID         Albert         35.00         Blass                                                                                                                                                                                                                                                                                           |                                                     |        |          |                |        |             |       |          |                 |             | 75.26           |
| 7013         DANILIPY         2000 7001                                                                                                                                                                           |                                                     |        |          |                |        |             |       |          |                 |             | 97.09           |
| 7013         DANLEPK         2000 7001         2000 7001         2000 7001         2000 7001         2000 7001         2000 7001         2000 7001         2000 7001         2000 7001         2000 7001         2000 7001 7001         2000 7001 7001 7001 7000 7000 7000 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |        |          |                |        |             |       |          |                 |             | 97.09           |
| 7013       DANLEY, 2000 70601       DANLEY, 3450075       110.49       108.77       113.10       113.10       115.81       81.55       81.55       86.6       85.44         70153       LETISDAL, 11100 7041       UNKERS 115.001       116.105       151.21       151.21       151.23       127.038       164.42       45.61       27.3       49.91       47.18         70163       ELMT       120.00 7059       MONY, HLI 23.00 7059       MONY, HLI 23.00 715       118.47       113.54       125.75       122.76       123.02       83.99       80.62       83.18       86.39         70295       SMONY, HLI 23.00 7059       MONY, HLI 23.                                                                                                                                                         |                                                     |        |          |                |        |             |       |          |                 |             | 87.25<br>87.25  |
| 70259         16TEGAL*         11150         7043         96.87         97.10         97.10         97.54         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         97.57         <                                                                                                                                                                                                                                                                              |                                                     |        |          |                |        |             |       |          |                 |             | 87.25           |
| TOLGS         LATI         20.00         TOLS         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00                                                                                                                                                                                                                                                                                            |                                                     |        |          |                |        |             |       |          |                 |             | 78.74           |
| 70149       DENVER TEM 22.00 70161       LIATI       23.001       119.98       100.73       112.575       122.002       83.99       80.62       89.18       86.39         70396       SMORY HLL 20.00 70399       SMORY HLL 34.00 T5       118.47       113.54       123.75       122.07       122.002       83.99       80.62       89.18       86.39         70195       SMORY HLL 20.00 7039       PMARLER 42.00 7131       PMARLE 42.00 7141       PMARLE 42.00 7141 </td <td></td> <td>45.07</td> |                                                     |        |          |                |        |             |       |          |                 |             | 45.07           |
| 70996       SMOXY, HIL 22007 7599       SMOXY, HIL 345:00 14       118.47       113.54       125.75       121.76       123.02       83.99       80.62       89.18       86.39         70199       SMOXY, HIL 2000 7599       SMOXY, HIL 2000 7599       SMOXY, HIL 2000 759       SMOXY, HIL 2000 750       SMOXY                                                        |                                                     |        |          |                |        |             |       |          |                 |             | 36.3            |
| 70139         DANIELYC 2000 77031         IPARIE 1 23001         1082         1092         1109 56         11657         77.34         69.11         88.1         78.63           70027         CANTOL HULLISOD 7038         CHARCEAT 230.00         101.07         107.21         123.32         123.61         104.4         67.66         65.77           7025         CANTOL HULLISOD 7038         CHANERS         115.00         103.71         103.23         114.31         87.85         85.83         93.91         91.11           7012         CLARK         230.00 77564         HANMAN         115.00         70.23         85.63         118.37         100.23         85.23         93.14         17.75           7012         CLARK         230.00 77564         HANMAY         110.23         88.63         118.19         100.18         97.92         111.5         72.1         69.23         84.17         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75         17.75                                                                                                                                                                                                                                                                                          |                                                     |        |          |                |        |             |       |          |                 |             | 87.52           |
| 70239         JUNUL2         23000         70087         70087         70127         121.35         63.51         60.44         67.66         65.57           70087         CAPTCD, HULL300         7016         FUNNRE TM, 115.00         101.71         150.5         131.1         152.38         121.61         0pm         Opm         Opm         Opm         Opm         Opm         0pm         0pm <td>70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T5</td> <td>118.47</td> <td>113.54</td> <td>125.75</td> <td>121.76</td> <td>123.02</td> <td>83.99</td> <td>80.62</td> <td>89.18</td> <td>86.39</td> <td>87.52</td>                                                                                                                   | 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T5  | 118.47 | 113.54   | 125.75         | 121.76 | 123.02      | 83.99 | 80.62    | 89.18           | 86.39       | 87.52           |
| 70087         CAPTIOL, HILLISSO 7014         DENVER, TRM, 1115 001         101.71         105.2         113.11         152.38         121.61         Open         Open <t< td=""><td>70139 DANIELPK 230.00 70331 PRAIRIE_1 230.00 1</td><td>108.35</td><td>96.3</td><td>123.02</td><td>109.96</td><td>116.57</td><td>77.34</td><td>69.11</td><td>88.1</td><td>78.63</td><td>82.52</td></t<>                                                                                      | 70139 DANIELPK 230.00 70331 PRAIRIE_1 230.00 1      | 108.35 | 96.3     | 123.02         | 109.96 | 116.57      | 77.34 | 69.11    | 88.1            | 78.63       | 82.52           |
| 72016       HANMAR 11500       100246       98.48       105.77       103.62       114.31       97.85       96.38       99.91       91.11         7015       CARAS       2200.7024       DRDAN       200.01       94.78       1100.7       80.63       93.28       74.68       83.37         70395       SMOKY HIL 220.00 7056       HARVEST MI 230.00 1       96.41       92.16       103.42       99.58       101.22       72.21       69.23       84.71       74.75         70259       JEWELIZ 230.00 7026       LETSDALE 230.001       25.12       91.76       101.88       57.22       11.15       57.21       53.97       61.17       99.64         70215       JERENLOO 1230.00 7031       PARATE       102.46       84.26       110.88       57.22       11.15       57.21       53.97       61.17       99.64         70215       GREENWOOD 230.00 7031       PARATE       103.62       70.02       65.44       78.4       72.57         70036       MARAHOE 230.00 70189       GREENWOOD 230.001       92.16       85.79       104.26       96.69       108.02       70.72       65.44       78.4       72.57         70036       MARAHOE 230.00 70126       GREENWOOD 2150.01       127.61                                                                                                                                                                                                                                                                                                                                                            | 70239 JEWELL2 230.00 70491 TOLLGATE 230.00 1        | 104.2  | 100.97   | 111.07         | 107.27 | 121.35      | 63.51 | 60.44    | 67.66           | 65.57       | 72.6            |
| 70112         CLARK         2000 70241         UPRDAN         20001         94.78         10107         80.63         89.28         74.68         83.37           70396         SMOKY HILL 2000         TOSA         P058         10122         72.11         69.23         84.71         74.75           70142         DEERCAK         115.00         TO400         SODALAKE         115.001         102.54         88.63         118.82         103.91         113.26         102.83         88.6         118.19         104.16           70239         JEWELL 230.00         TOSO TOSO TOSO TOSO TOSO TOSO TOSO TOSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |        |          |                |        |             |       |          |                 |             | Open            |
| 70396       SMORY HIL 230.00 70566       HARVEST MI 230.01       99.41       92.16       103.42       99.88       101.22       72.21       60.23       84.71       74.75         70142       DERCRK 115.00 70400       SODALAKE 115.00 1       102.54       88.63       118.82       103.91       113.26       102.83       88.6       118.19       104.16         70239       JEWELL 230.00 70260       LETSDALE 230.01       95.12       91.76       101.88       97.92       111.5       57.21       53.97       61.17       59.08         70463       WATERTON 115.00 70483       WATERTN TP 115.001       95.51       90.14       102.17       96.69       106.43       87.56       87.59       87.5       87.39       87.5       87.39       87.5       70.20       65.44       78.4       72.21       103.02       103.26       103.66       90.69       108.02       70.72       65.44       78.4       72.57       102.54       86.8       55.76       52.04       103.02       103.26       86.66       90.44       93.24       87.35       62.19       58.22       62.77       62.17       62.17       62.17       62.17       62.17       62.17       62.19       102.54       85.27       63.03       73.57                                                                                                                                                                                                                                                                                                                                         |                                                     |        |          |                |        |             |       |          |                 |             | 111.51          |
| 70142       DERČRK       115.00       500.40.4K       115.00       100.244       88.63       1118.22       101.243       111.26       102.83       88.6       118.19       104.16         70239       JEWELL2       230.00       70260       LETSDALE 230.00       95.12       91.76       101.88       97.92       111.50       57.21       53.97       61.17       59.08         70213       MERENWOD 120.00       70331       PRANE 1       230.00       96.37       84.26       110.96       97.85       104.26       70.02       61.69       80.69       71.22         70013       ARAPADE 0       720.20       07013       PRANE 1       123.00       194.16       86.79       104.26       97.85       104.26       70.02       61.94       87.84       72.57         70115       MARISON PSI115.00       702.2       LEELSDALE 2115.001       127.61       153.28       169.48       152.57       183.24       51.52       48.68       55.76       52.04         70205       GRAY STREFT 115.00       702.52       LAREWOOD 1       115.00       100.34       81.59       97.7       94.68       69.66       89.03       71.5       58.75       82.49         70205       GRAY STREF                                                                                                                                                                                                                                                                                                                                                                     |                                                     |        |          | 50101          |        |             |       |          |                 |             | 92.27           |
| 70239         EWELL         2300 70260         LETSDALE         23001         95.12         91.76         101.88         97.92         111.5         57.21         53.97         61.17         99.08           70436         WATERTON         115.00         702.1         GREANWOOD         123.00         703.1         GREANWOOD         70.20         66.10         87.55         87.50         87.5         87.39           70121         GREANWOOD         123.00         703.00         94.16         86.79         104.26         96.69         108.02         70.72         65.44         78.4         72.57           70213         HARRISON PSIILSO         702.00         115.00         107.41         152.00         48.68         55.76         52.04           70101         CHEROKER, N15.00         70.24         FEDRHT33         115.00         93.61         86.76         94.04         93.34         87.35         62.19         58.22         62.77         62.17           70205         GRAY STREET 115.00         70.515         JAEWOOD, 115.001         90.61         97.90         86.38         69.66         89.03         71.5         87.57         82.84           70207         MARAPA         115.00         70.62 </td <td></td> <td>75.82</td>                                                                                                                                                                                  |                                                     |        |          |                |        |             |       |          |                 |             | 75.82           |
| 70463         WATERTON         115.00         70433         WATERTON         115.00         7043         WATERTON         115.00         7043         WATERTON         115.00         7043         WATERTON         115.00         7043         WATERTON         115.00         70431         PRAIRIEL         23.000         29.37         84.26         110.06         97.85         104.26         70.02         61.69         80.69         71.22           70033         RARPAND 2230.00         139.11         86.79         104.26         96.69         108.02         70.072         65.44         78.4         72.57           70135         HARRISON PSILIS.00         70.172         FORTAUT         FEDERTISALE 2115.00.1         139.61         86.76         94.04         93.24         87.35         62.19         58.22         62.77         62.17           70208         GRAY STREET 115.00         70.51         LAKEWOOD 115.00         109.61         97.69         88.38         85.57         50.41         58.25         62.91         63.8         49.91           70208         GRAY STREET 115.00         105.01         97.62         83.31         88.09         90.27         55.22         64.56         66.79         62.91         63.8 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>109.76<br/>65.94</td></td<>                                                                                                                                                 |                                                     |        |          |                |        |             |       |          |                 |             | 109.76<br>65.94 |
| 70212       GREENWOOD 1230.00 7033       PRANE 1 230.00 2       9637       84.26       110.96       97.65       104.26       70.02       61.69       80.69       71.22       PRAINES 0         70038       ARAPAHOE 230.00 70189       GREENWOOD 2230.01       94.16       86.79       104.26       96.69       108.02       70.72       65.44       78.4       72.57         70013       HARRISON 70282       LETSDALE 2115.00 1       132.81       169.48       152.57       183.24       51.52       46.68       55.76       52.04         70100       CHEROKEE, N 115.00 70251       LAKEWOOD_1 115.001       100.34       81.59       97.7       94.68       69.66       80.03       71.55       87.57       82.84         70208       GRAY_STREET 115.00 7037       SANDOWN 115.001       99.61       97.76       86.38       89.57       50.41       TSEMAPTETO2 to NEW_SUB_Antry         70036       GRAP_A 115.00 7037       SANDOWN 115.001       99.62       95.56       92.96       98.88       74.1       71.03       80.72       76.17         70036       ARAP_A 115.00 7037       ARAP_B 115.001       91.74       88.86       95.96       92.96       98.88       74.1       71.03       80.72       76.17 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>65.94<br/>87.63</td></tr<>                                                                                                                                                                                                  |                                                     |        |          |                |        |             |       |          |                 |             | 65.94<br>87.63  |
| 70038       ARAPAHOE       23.000       7018       GRENWOOD_223.000       194.6       86.79       104.26       96.69       108.02       70.72       65.44       78.4       72.57       P         70215       HARKSON PS1115.00       70282       LEETSDALE 2115.001       127.61       153.28       169.48       152.57       183.24       65.19       45.62       62.77       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.17       62.16       62.77       62.91       63.8       100.32       82.84       89.57       50.41       50.41       50.41       50.72       64.56       66.79       62.91       63.8       100.32       70.72       70.28       MAPLETO2 115.00       70.37       SANDOWN 115.001       91.48       88.69       92.96       98.88       74.1       71.03       80.72       76.17       62.91       63.8       11.02       11.02       11.02       11.02       10.12       11.02                                                                                                                                                                                                                                                                                                                                               |                                                     |        |          |                |        |             |       |          |                 |             | 75.07           |
| 70215       HARRISON P51115.00       70282       LEETSDALE 2 115.00 1       1127.61       153.28       169.48       152.57       183.24       51.52       48.68       55.76       52.04         70110       CHEROKEE_N 115.00 70174       FEDERHT23 115.00 1       93.61       86.76       94.04       93.24       87.35       62.19       58.22       62.77       62.17       62.17       62.17       67.17       67.20       89.57       89.57       89.57       89.57       89.57       89.57       89.57       89.57       89.57       89.57       87.57       89.5       84.49       10.12       10.34       81.59       97.7       94.68       69.66       89.03       71.5       87.57       82.84       10.150.01       10.34       81.59       97.7       94.68       69.66       89.03       71.5       87.57       82.84       10.150.01       10.14       80.97       50.41       70.03       80.72       76.17       66.79       66.79       66.79       66.79       66.79       66.79       67.91       63.8       85.11       10.162.13       86.22       82.23       90.43       69.23       114.48       85.11       10.17       70.026       ARAP_A 115.00 7037       ARAP 40.150.1       90.4       87.2                                                                                                                                                                                                                                                                                                                                      |                                                     |        |          |                |        |             |       |          |                 |             | 78.47           |
| 70110       CHEROKEE_N       115.00       70174       FEDERHT23       115.00       93.61       86.76       94.04       93.24       87.35       62.19       58.22       62.77       62.17       62.17         70208       GRAY_STREFT       115.00       70251       LAKEWOOD_2       115.00       100.34       81.59       97.7       94.68       69.66       89.03       73.57       89.5       82.84       99.7         70208       GRAY_STREFT       115.00       70251       LAKEWOOD_1       115.00       99.61       97.96       86.38       89.57       50.41       See MAPLETO2 to NEW_SUB_A entry         70108       CHEROKE S       115.00       7027       ARAP_A       115.00       7007       ARAP_A       115.00       86.72       98.88       74.1       71.03       80.72       76.17         70285       MIDWAYPS       115.00       707.7       94.68       89.99       92.30       88.11       96.4       79.73       74.06       85.21       79.51       62.91       63.8       51.1       70.02       74.67       74.67       74.67       74.67       74.67       74.67       74.67       74.67       74.67       74.67       74.67       74.67       74.67       74                                                                                                                                                                                                                                                                                                                                                                       |                                                     |        |          |                |        |             |       |          |                 |             | 79.94           |
| 70208       GRAY_STREET 115.00       70222       LAKEWOOD_2 115.00 1       101.32       82.84       98.97       95.92       72.85       87.03       73.57       89.5       84.91         70208       GRAY_STREET 115.00       70251       LAKEWOOD_1 115.001       100.34       81.59       97.7       94.68       69.66       89.03       71.5       87.57       82.84         70207       MAPIETO2       115.00       70377       SANDOWN       115.001       99.61       97.96       86.38       89.57       50.41       .       See MAPIETO2 to NEW_SUB A entry         70108       CHEROKEE 5       115.00       7028       MIDWAYPS       115.00       99.74       88.80       99.27       55.22       64.56       66.79       62.91       63.8         70036       ARAP_A       115.00       7028       MIDWAYPS       135.00       70.97       74.06       86.22       82.23       90.34       69.23       114.88       85.11         70108       CHEROKEE 5       115.00       70.72       MIDWAYPS       135.00       79.92       74.67       74.67       74.67         7026       CROXO 7037       SANDOWN       115.00       90.4       88.25       91.06       89.41       65.4                                                                                                                                                                                                                                                                                                                                                                     |                                                     |        |          |                |        |             |       |          |                 |             | 51.74           |
| 70277       MAPLETO2       115.00       70377       SANDOWN       115.001       99.61       97.96       86.38       89.57       50.41       See MAPLETO2 to NEW_SUB_A entry         70108       CHEROKEE 5, 115.00 70238       NORTH PS, 115.001       97.62       93.31       88.09       90.27       55.22       64.56       66.79       62.91       63.8         70036       ARAP_A       115.00 70037       ARAP_B       115.001       91.74       88.86       95.96       92.96       98.88       74.1       71.03       80.72       76.17         70162       EAST_1       115.00 70237       MIDWAYPS       15.001       90.68       80.9       92.3       88.11       96.4       79.73       74.06       85.21       79.51         70162       EAST_1       115.00 70331       AIR_LIQ_TP       115.001       90.44       84.26       92.82       90.58       86.59       73.38       70.99       76.57       74.67         70162       CONCOC0       115.00 70377       SANDOWN       115.001       90.1       86.52       91.06       89.41       65.14       Refer to CONOCO to NEW SUB A entry         70144       DENVER_TRM_2115.00       71.91       107.78       110.2       111.25       139.                                                                                                                                                                                                                                                                                                                                                   |                                                     | 101.32 |          | 98.97          | 95.92  |             |       | 73.57    |                 |             | 80.39           |
| 70108       CHEROKEE_S 115.00 70298       NORTH_PS       115.00 1       97.62       93.31       88.09       90.27       55.22       64.56       66.79       62.91       63.8         70036       ARAP_A       115.00 70037       ARAP_B       115.00 1       91.74       88.86       95.96       92.96       98.88       74.1       71.03       80.72       76.17         70285       MIDWAYPS 230.00 T1       91.4       70.3       116.23       86.22       82.23       90.43       69.23       114.88       85.11         70162       EAST_1       115.00 70171       EAST_2       115.00 1       90.68       80.9       92.3       88.11       96.4       79.73       74.06       85.11       79.6         70162       EAST_1       115.00 7037       SANDOWN 115.001       90.24       84.26       92.82       90.58       86.59       73.38       70.09       76.57       74.67         70126       CONCOC 115.00 70377       SANDOWN 115.001       77.19       107.78       110.2       111.25       139.24       78.06       91.48       91.44       96.44       91.48       91.44       96.47       135.02       76.57       74.67         70126       LONCUT_1       115.00 7014 </td <td>70208 GRAY_STREET 115.00 70251 LAKEWOOD_1 115.00 1</td> <td>100.34</td> <td>81.59</td> <td>97.7</td> <td>94.68</td> <td>69.66</td> <td>89.03</td> <td>71.5</td> <td>87.57</td> <td>82.84</td> <td>77.22</td>                                                                                                                                                 | 70208 GRAY_STREET 115.00 70251 LAKEWOOD_1 115.00 1  | 100.34 | 81.59    | 97.7           | 94.68  | 69.66       | 89.03 | 71.5     | 87.57           | 82.84       | 77.22           |
| 70036       ARAP_A       115.00       70037       ARAP_B       115.00       101.01       91.74       88.86       95.96       92.96       98.88       74.1       71.03       80.72       76.17         70285       MIDWAYPS       115.00       70286       MIDWAYPS       230.00       11       91.4       70.3       116.23       86.22       82.23       90.43       69.23       114.88       85.11         70162       ASAT_1       115.00       7051       AIR_LQ_TP       115.00       90.64       80.9       92.3       88.11       96.4       79.73       74.06       85.21       79.51       74.67         70036       ARAP_A       115.00       7037       SANDOWN 115.001       90.4       86.52       91.06       89.41       65.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |        |          |                |        |             |       |          |                 | SUB_A entry |                 |
| 70285 MIDWAYPS 115.00 70286 MIDWAYPS 230.00 T1       91.4       70.3       116.23       86.22       82.23       90.43       69.23       114.88       85.11         70162 EAST_1 115.00 70171 EAST_2 115.00 1       90.68       80.9       92.3       88.11       96.4       79.73       74.06       85.21       79.51       6         70036 ARAP_A 115.00 70531 AIR_UCP 115.00 1       90.24       84.26       92.82       90.58       86.59       7.38       70.06       85.21       79.51       6         70126 CNOC0 115.00 70377 SANDOWN 115.001       90.14       86.52       91.06       89.41       65.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |        |          |                |        |             |       |          |                 |             | 47.16           |
| 70162       EAST_1       115.00       70171       EAST_2       70.09       76.57       74.67       74.67         70126       CONOCO       115.00       70377       SANDOWN       115.00       90.1       86.52       91.06       89.41       65.14       Toter to CONOCO to NW SUB Aenty         70144       DENVER TRM_1115.00       77.19       107.78       110.2       111.25       139.24       78.06       91.48       91.48       95.47       66.18         70365       LOOKOUT_1       115.00       7039       B.CRK PS       20.00 T1       88.2       95.5       81.19       90.93       90.44       87.22       94.68       80.23       89.97         70144       DENVER_TEM_2115.00       70149       DENVER_TERM 20.00 T2       61.19       95.34       100.12       99.23       106.64       61.94       82.47       84.3       81.38       63.21       66.18       65.77                                                                                                                                                                                                                                                                                                                                                          |                                                     |        |          |                |        |             |       |          |                 |             | 87              |
| 70036         ARAP_A         115.00         70331         AIR_UQ_TP         115.00         90.24         84.26         92.82         90.58         86.59         73.38         70.09         76.57         74.67           70126         CONOCO         115.00         7037         SANDOWN         115.00         90.1         86.52         91.06         89.41         65.14         Refer         CONOCO to NEW SUB_A entry           70144         DENVER_TRM_2115.00         7077         SANDOWN         115.00         7037         SANDOWN         95.61         93.85         92.48         90.66         55.77         63.8         63.21         66.18           70398         BEAVER_CKI         115.00         7014         BENVER_TEM_2115.00         71.9         95.51         93.85         92.48         90.66         55.77         63.8         63.21         66.18           70398         BEAVER_CKI         115.00         70399         B.CRK.PS         23.00011         88.2         95.5         81.19         99.03         90.44         87.22         94.68         80.23         89.97           70144         DENVER_TEM_210.00 T2         61.19         95.34         100.12         99.23         106.6         61.94         8                                                                                                                                                                                                                                                                                               |                                                     |        |          |                |        |             |       |          |                 |             | 80.64           |
| TO126         CONCO         115.00         70377         SANDOWN         115.00         90.1         86.52         91.06         89.41         65.14         Refer to CONOCO to NEW SUB A entry           70144         DENVER_TRM_2115.00         70148         DENVER_TRM_1115.00 1         77.19         107.78         110.2         111.25         139.24         78.06         91.48         91.48         95.47           70265         LOOKOUT_1         115.00         70.266         LOOKOUT_230.00 11         84.59         95.61         93.85         92.48         90.66         55.77         63.8         63.21         66.18           70398         BEAVER_CK1         115.00         7014         DENVER_TRM_2115.00         7014         BENVER_TRM_2115.00         7014         BENVER_TRM_230.00 T2         61.19         95.34         100.12         99.23         106.6         61.94         82.47         84.3         81.38         D           70144         DENVER_TRM_2115.00         70149         DENVER_TRM 230.00 T2         61.19         95.34         100.12         99.23         106.6         61.94         82.47         84.3         81.38         D           70260         LEETSDALE 215.00 T5         86.75         94         104.27         9                                                                                                                                                                                                                                                                    |                                                     |        |          |                |        |             |       |          |                 |             | 90.97           |
| 70144 DENVER_TRM_2115.00 70148 DENVER_TRM_1115.00 1       77.19       107.78       110.2       111.25       139.24       78.06       91.48       91.48       95.47       95.47         70265 LOOKOUT_115.00 70266 LOOKOUT 230.00 T1       84.59       95.61       93.85       92.48       90.66       55.77       63.8       63.21       66.18         70398 BEAVER_CK1 115.00 70149 DENVER_TERM 230.00 T2       61.9       95.34       100.12       99.23       90.64       87.22       94.68       80.23       89.79         70144 DENVER_TRM_2115.00 70149 DENVER_TERM 230.00 T2       61.9       95.34       100.12       99.23       106.6       61.94       82.47       84.3       81.38       60.14         70260 LEETSDALE 230.00 70282 LEETSDALE 2115.00 T5       86.75       94       100.42       96.33       106.24       70.33       70.35       82.06       76.78       61.14         70139 DANIELPK 230.00 70547 FULLER 230.00 1       67.63       39.39       102.3       64.17       71.14       65.66       37.47       100.24       62.12         70653 TUNDRA 345.00 70654 COMANCHE 345.001       56.55       17.21       100.56       46.72       55.41       58.08       103.03       48.3         70653 TUNDRA 345.00 70654 COMANCHE 345.001       55.99                                                                                                                                                                                                                                                                                  |                                                     |        |          |                |        |             | /3.38 |          |                 |             | 71.45           |
| 70265       LOOKOUT_1       115.00       70266       LOOKOUT_2       30.00       71       84.59       95.61       93.85       92.48       90.66       55.77       63.8       63.21       66.18         70398       BEAVER_CK1       115.00       70399       B.CRK_PS       230.00       71       88.2       95.5       81.19       90.93       90.44       87.22       94.68       80.23       89.97         70144       DENVER_TEM_2115.00       70139       DENVER_TEM 230.00       72       61.19       95.34       100.12       99.23       106.6       61.94       82.47       84.3       81.38         70260       LETSDALE_2115.00       75       86.75       94       104.27       96.33       106.24       70.33       70.35       82.06       76.78       62.12         70139       DANIELPK       230.00       7347       FULLER 230.01       67.63       39.39       102.3       64.17       71.14       65.66       37.47       100.24       62.12         70553       TUNDRA       345.00       70654       COMANCHE 345.001       55.99       17.04       100.54       46.25       55.41       58.08       18.69       103.03       48.3         70553 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>79.06</td> <td></td> <td></td> <td></td> <td>119.64</td>                                                                                                                                                                                                                                                                  |                                                     |        |          |                |        |             | 79.06 |          |                 |             | 119.64          |
| 70398       BEAVER_CK1       115.00       70399       B.C.RK_PS       230.00       11       88.2       95.5       81.19       90.93       90.44       87.22       94.68       80.23       89.97         70144       DENVER_TRM_2115.00       70149       DENVER_TRM_230.00       16.19       95.34       100.12       99.23       106.6       61.94       82.47       84.3       81.38         70260       LEETSDALE_210.00       70282       LEETSDALE_2115.00       86.75       94       104.27       96.33       106.24       70.33       70.35       82.06       76.76       86         70139       DANIELPK       230.00       7347       FULLER       230.00       67.67       89.97       102.3       64.17       71.14       65.66       37.47       100.24       62.12       100.12       100.14       100.156       46.72       55.41       58.08       18.69       103.03       48.3       48.3         70653       TUNDRA       345.00       70654       COMANCHE 345.001       55.99       17.04       100.54       46.25       54.85       57.5       18.5       102       47.81         70259       LETSDALE_115.00       7028       LETSDALE_2115.00       88.87       88.8                                                                                                                                                                                                                                                                                                                                                                      |                                                     |        |          |                |        |             |       |          |                 |             | 73.72           |
| 70144       DENVER_TRM_2115.00       70149       DENVER_TERM 230.00       72       61.19       95.34       100.12       99.23       106.6       61.94       82.47       84.3       81.38         70260       LEETSDALE 230.00       70282       LEETSDALE 2115.00 TS       86.75       94       104.27       96.33       106.24       70.33       70.35       82.06       76.78       0         70139       DANIELPK 230.00       70347       FULLER 230.00       67.63       39.39       102.3       64.17       71.14       65.66       37.47       100.24       62.12         70653       TUNDRA 345.00       70654       COMANCHE 345.002       56.55       17.21       101.56       46.72       55.41       58.08       18.09       103.03       48.3         70653       TUNDRA 345.00       70554       COMANCHE 345.001       55.99       17.04       100.54       46.25       55.48       57.5       18.5       102       47.81         70259       LEETSDALE_1115.00 T282       LEETSDALE_2115.001       88.87       88.83       96.64       90.66       91.12       65.57       62.45       82.11       72.28       47.81                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |        |          |                |        |             |       |          |                 |             | 89.55           |
| 70260       LEETSDALE       210.00       70282       LEETSDALE       2115.00       75       86.75       94       104.27       96.33       106.24       70.83       70.35       82.06       76.78       96         70139       DANIELPK       230.00       73477       FULLER       230.001       67.63       39.39       102.3       64.17       71.14       65.66       37.47       100.24       62.12         70633       TUNDRA       345.00       70654       COMANCHE 345.002       56.55       17.21       101.56       46.72       55.41       58.08       18.99       103.03       48.3         70653       TUNDRA       345.00       70654       COMANCHE 345.001       55.99       17.04       100.54       46.25       55.45       57.5       18.5       102.4       47.81         70259       LEETSDALE_1115.00       70282       LEETSDALE_2115.001       88.97       88.83       96.64       90.66       91.12       65.57       62.45       82.11       72.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |        |          |                |        |             |       |          |                 |             | 91.06           |
| 70139 DANIELPK 230.00 73477 FULLER 230.001       67.63       39.39       102.3       64.17       71.14       65.66       37.47       100.24       62.12         70653 TUNDRA 345.00 70654 COMANCHE 345.002       56.55       17.21       101.56       46.72       55.41       58.08       18.69       103.03       48.3         70653 TUNDRA 345.00 70654 COMANCHE 345.001       55.99       17.04       100.54       46.25       54.85       57.5       18.5       102       47.81         70259 LEFTSDALE_115.00 70282 LEFTSDALE_2115.001       88.87       88.83       96.64       90.66       91.12       65.57       62.45       82.11       72.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |        |          |                |        |             |       | -        |                 |             | 102.28          |
| 70653         TUNDRA         345.00         70654         COMANCHE         345.00         55.99         17.04         100.54         46.25         54.85         57.5         18.5         102         47.81           70259         LEETSDALE_1115.00         70282         LEETSDALE_2115.001         88.97         88.83         96.64         90.66         91.12         65.57         62.45         82.11         72.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |        |          |                |        |             |       |          |                 |             | 68.59           |
| 70259 LEETSDALE_1115.00 70282 LEETSDALE_2115.00 1 88.97 88.83 96.64 90.66 91.12 65.57 62.45 82.11 72.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |        |          |                |        |             |       |          |                 |             | 57.18           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |        |          |                |        |             |       |          |                 |             | 56.61           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |        |          |                |        |             |       |          |                 |             | 114.56          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70259 LEETSDALE_1 115.00 70260 LEETSDALE 230.00 T4  | 80.89  | 85.01    | 96.28          | 88.66  | 109.64      | 72.93 | 72.45    | 84.4            | 79.02       | 105.07          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |        |          |                |        |             |       |          |                 |             | 90.26<br>111.85 |

| 2027                                               | Pre Mitigation                     |               |                        |                  |             | Post Mitigation |            |                   |                  |             |
|----------------------------------------------------|------------------------------------|---------------|------------------------|------------------|-------------|-----------------|------------|-------------------|------------------|-------------|
| <> MONITORED_BRANCH>                               | Peak                               | Twilight      | <b>Comanche Stress</b> | Pathway Stress   | No Cherokee | Peak            | Twilight   | Comanche Stress   | Pathway Stress   | No Cherokee |
|                                                    |                                    |               |                        |                  |             |                 |            |                   |                  |             |
| 70463 WATERTON 115.00 70464 WATERTON 230.00 T2     | 88.83                              | 85.09         | 92.92                  | 88.88            | 94.28       | 87.73           | 83.31      | 90.93             | 87.57            | 90.28       |
| 70263 LITTLET1 115.00 70483 WATERTN_TP 115.00 1    | 85.39                              | 79.79         | 91.76                  | 86.22            | 95.94       | 76.74           | 76.76      | 77.17             | 76.59            | 77.09       |
| 70596 HARVEST_MI 230.00 70597 HARVEST_MI 345.00 T1 | 85.41                              | 81.3          | 91.2                   | 87.71            | 88.56       | 65.29           | 62.08      | 73.08             | 67.09            | 67.93       |
| 70596 HARVEST_MI 230.00 70597 HARVEST_MI 345.00 T2 | 85.41                              | 81.3          | 91.2                   | 87.71            | 88.56       | 65.29           | 62.08      | 73.08             | 67.09            | 67.93       |
| 70283 MEADOWHL 230.00 70396 SMOKY_HILL 230.00 1    | 83.68                              | 87.77         | 81.84                  | 85.92            | 94.44       | 75.68           | 80.52      | 73.25             | 77.88            | 83.74       |
| 70037 ARAP_B 115.00 70401 SOUTH_TAP 115.00 1       | 77.61                              | 74.44         | 84.33                  | 79.88            | 92.07       | 68.87           | 66.58      | 73.99             | 70.84            | 77.03       |
| 70154 DERBY_2 115.00 70216 HAVANA1 115.00 1        | 79.49                              | 78.24         | 85.43                  | 82.97            | 90.97       | 67.95           | 67.43      | 75.07             | 72.85            | 91.14       |
| 70208 GRAY_STREET 115.00 70402 SOUTH 115.00 1      | 81.89                              | 82.88         | 82.55                  | 82.96            | 83.57       | 66.75           | 68.04      | 69.52             | 68.89            | 75.7        |
| 70481 MONACO_12 230.00 770189 GREE-SR 230.00 1     |                                    | Refer to GREE | NWOOD_2 230.00         | to MONACO_12 ent | ry          | 80.8            | 76.21      | 89.91             | 83.43            | 91.98       |
| 70189 GREENWOOD_2 230.00 770189 GREE-SR 230.00 2   |                                    | Refer to GREE | NWOOD_2 230.00         | to MONACO_12 ent | ry          | 80.79           | 76.2       | 89.91             | 83.42            | 91.97       |
| 70037 ARAP_B 115.00 70038 ARAPAHOE 230.00 T6       |                                    |               |                        |                  |             | 92.46           | 91.69      | 98.41             | 95.89            | 104.18      |
| 70139 DANIELPK 230.00 70527 SANTA_FE 230.00 1      | 78.13                              | 71.27         | 86.94                  | 79.82            | 86.86       | 89.03           | 65.94      | 98.99             | 91.21            | 98.04       |
| 70277 MAPLETO2 115.00 770277 NEW_SUB_A 115.00 1    | Refer to MAPLETO2 to SANDOWN entry |               |                        |                  |             | 71.99           | 74.92      | 69.18             | 68.57            | 31.91       |
| 70126 CONOCO 115.00 770277 NEW_SUB_A 115.00 1      | Refer to CONOCO to SANDOWN entry   |               |                        |                  |             | 72.78           | 69.14      | 68.67             | 65.16            | 36.45       |
| 70189 GREENWOOD_2 230.00 70481 MONACO_12 230.00 1  | 137.62                             | 129.63        | 150.55                 | 141.6            | 159.04      |                 | Refer to G | REENWOOD_2 230.00 | to GREE-SR entry |             |

| 2028                                                                                                                                                                                                  | Pre Mitigation   |                 |                  |                  | Post Mitigation  |                |                |                            |                |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------------------|------------------|------------------|----------------|----------------|----------------------------|----------------|------------------|
| <> MONITORED_BRANCH>                                                                                                                                                                                  | Peak             | Twilight        | Comanche Stress  |                  | No Cherokee      | Peak           | Twilight       | Comanche Stress            | Pathway Stress | No Cherokee      |
|                                                                                                                                                                                                       |                  |                 |                  |                  |                  |                |                |                            |                |                  |
| 70189 GREENWOOD 2 230.00 70212 GREENWOOD 1 230.00 1                                                                                                                                                   | 162.37           | 146.93          | 169.48           | 162.77           | 188.48           | 83.96          | 76.12          | 89.44                      | 84.8           | 96.86            |
| 70107 CHEROKEE 230.00 70108 CHEROKEE S 115.00 T1                                                                                                                                                      | 39.61            | 79.7            | 104.08           | 48.57            | 80.94            | 54.27          | 54.35          | 59.64                      | 59.1           | 74.05            |
| 70148 DENVER_TRM_1115.00 70208 GRAY_STREET 115.00 1                                                                                                                                                   | 125.77           | 120.37          | 118.36           | 124.89           | 94.91            | 53.87          | 57.33          | 59.83                      | 61.51          | 44.36            |
| 70365 SULLIVN2 230.00 70481 MONACO_12 230.00 1                                                                                                                                                        | 151.48           | 136.78          | 158.91           | 152.3            | 178.85           | 84.15          | 75.44          | 91.65                      | 85.09          | 99.5             |
| 70045 BANCROFT 115.00 70208 GRAY_STREET 115.00 1                                                                                                                                                      | 102.45           | 102.89          | 98.2             | 102.03           | 91.8             | 85.71          | 88.08          | 87.32                      | 88.74          | 81.7             |
| 70139 DANIELPK 230.00 70323 PRAIRIE_3 230.00 2                                                                                                                                                        | 145.46           | 129.02          | 154.23           | 145.23           | 165.25           | 82.64          | 73.68          | 91.17                      | 83.14          | 93.98            |
| 70108 CHEROKEE_S 115.00 70277 MAPLETO2 115.00 1<br>70653 TUNDRA 345.00 70654 COMANCHE 345.00 2                                                                                                        | 119.02           | 111.51          | 101.81           | 134.79           | 69.1             | 82.6           | 84.55          | 76.14                      | 84.09          | 29.02            |
| 70653         TUNDRA         345.00         70654         COMANCHE         345.00         2           70046         BUCKLEY2         230.00         70396         SMOKY_HILL         230.00         1 | 69.45<br>130.83  | 17.2<br>123.11  | 113.54<br>132.92 | 56.72<br>131.53  | 68.14<br>151.82  | 71.24<br>77.48 | 18.74<br>73.38 | 115.11<br>80.11            | 58.58<br>78.45 | 70<br>89.46      |
| 70653 TUNDRA 345.00 70554 COMANCHE 345.00 1                                                                                                                                                           | 68.75            | 17.03           | 112.4            | 56.15            | 67.45            | 70.52          | 18.55          | 113.95                     | 57.99          | 69.3             |
| 70046 BUCKLEY2 230.00 70491 TOLLGATE 230.00 1                                                                                                                                                         | 129.24           | 121.62          | 131.28           | 129.91           | 149.96           | 77.49          | 73.4           | 80.13                      | 78.46          | 89.47            |
| 70037 ARAP_B 115.00 70038 ARAPAHOE 230.00 T5                                                                                                                                                          | 103.26           | 99.34           | 111.24           | 110.7            | 115.87           | 87.4           | 88.04          | 86.85                      | 91.57          | 90.98            |
| 70087 CAPITOL_HILL115.00 70148 DENVER_TRM_1115.00 1                                                                                                                                                   | 168.23           | 104.35          | 160.62           | 107.59           | 112.5            | Open           | Open           | Open                       | Open           | Open             |
| 70260 LEETSDALE 230.00 70291 MONROEPS 230.00 1                                                                                                                                                        | 170.2            | 148.05          | 183.16           | 177.12           | 183.22           | 58.06          | 51.33          | 61.77                      | 58.75          | 61.65            |
| 70244 LAFAYETTE 115.00 70444 VALMONT_1 115.00 1                                                                                                                                                       | 101.89           | 99.19           | 99.91            | 101.64           | 100.55           | 99.48          | 98.29          | 98.47                      | 98.43          | 98.35            |
| 70189 GREENWOOD_2 230.00 70323 PRAIRIE_3 230.00 1                                                                                                                                                     | 133.47           | 117.39          | 142.3            | 133.36           | 153.01           | 77.36          | 68.45          | 85.9                       | 77.89          | 88.68            |
| 70260 LEETSDALE 230.00 70365 SULLIVN2 230.00 1                                                                                                                                                        | 136.96           | 121.83          | 146.05           | 139.01           | 165.8            | 67.1           | 58.17          | 75.15                      | 68.45          | 83.15            |
| 70538 CHAMBERS 115.00 70539 CHMBERS 230.00 T1<br>70538 CHAMBERS 115.00 70539 CHMBERS 230.00 T2                                                                                                        | 100.69<br>100.69 | 100.52          | 100.77<br>100.77 | 105.93           | 109.07<br>109.07 | 97.01<br>97.01 | 94.58<br>94.58 | 95.17<br>95.17             | 96.85<br>96.85 | 108.04<br>108.04 |
| 73211 WELD LM 115.00 73212 WELD LM 230.00 1                                                                                                                                                           | 94.55            | 100.52<br>95.06 | 93.82            | 105.93<br>94.36  | 109.07<br>95.12  | 97.01          | 94.58          | 93.2                       | 95.85          | 108.04<br>94.8   |
| 70259 LEETSDALE_1 115.00 70441 UNIVERS1 115.00 1                                                                                                                                                      | 95.56            | 93.00           | 91.66            | 92               | 89.09            | 47.49          | 46.82          | 46.7                       | 46.73          | 46.81            |
| 70020 CASTLRCK TP1115.00 70091 CASTLRCK 115.00 1                                                                                                                                                      | 99.59            | 96.72           | 96.08            | 99.38            | 100.87           | 98.35          | 95.85          | 94.3                       | 98.4           | 99.46            |
| 70163 ELATI1 230.00 70291 MONROEPS 230.00 1                                                                                                                                                           | 172.78           | 147.54          | 187.85           | 181.12           | 186.87           | 50.32          | 43.54          | 54.13                      | 51             | 53.96            |
| 70139 DANIELPK 230.00 70601 DANIELPK 345.00 T3                                                                                                                                                        | 115.07           | 110.92          | 117.17           | 117.56           | 122.75           | 87.03          | 84.09          | 88.65                      | 88.69          | 92.25            |
| 70139 DANIELPK 230.00 70601 DANIELPK 345.00 T4                                                                                                                                                        | 115.07           | 110.92          | 117.17           | 117.56           | 122.75           | 87.03          | 84.09          | 88.65                      | 88.69          | 92.25            |
| 70139 DANIELPK 230.00 70601 DANIELPK 345.00 T5                                                                                                                                                        | 115.07           | 110.92          | 117.17           | 117.56           | 122.75           | 87.03          | 84.09          | 88.65                      | 88.69          | 92.25            |
| 70149 DENVER_TERM 230.00 70163 ELATI1 230.00 1                                                                                                                                                        | 129.97           | 107.88          | 141.75           | 135.46           | 141.86           | 41.59          | 34.84          | 45.48                      | 42.3           | 45.26            |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T4                                                                                                                                                    | 123.29           | 117.19          | 128.12           | 126.57           | 132.86           | 87.24          | 83.13          | 90.81                      | 89.75          | 94.52            |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T5<br>70139 DANIFLPK 230.00 70331 PRAIRIE 1 230.00 1                                                                                                  | 123.29<br>115.91 | 117.19<br>99.79 | 128.12<br>125.63 | 126.57<br>114.93 | 132.86<br>127    | 87.24<br>81.91 | 83.13<br>70.63 | 90.81<br>90.39             | 89.75<br>81.71 | 94.52<br>90.34   |
| 70139 DANIELPK 230.00 70331 PRAIRIE_1 230.00 1<br>70239 JEWELL2 230.00 70491 TOLLGATE 230.00 1                                                                                                        | 115.91           | 102.1           | 125.63           | 114.93           | 130.47           | 65.85          | 61.92          | 68.53                      | 67             | 77.79            |
| 70217 HAVANA2 115.00 70538 CHAMBERS 115.00 2                                                                                                                                                          | 103.47           | 102.07          | 111.47           | 114.51           | 125.72           | 96.28          | 91.88          | 98.59                      | 97.53          | 121.25           |
| 70216 HAVANA1 115.00 70538 CHAMBERS 115.00 1                                                                                                                                                          | 105.62           | 99.69           | 109.47           | 112.59           | 124.43           | 93.41          | 88.75          | 95.82                      | 94.7           | 119.7            |
| 70396 SMOKY HILL 230.00 70596 HARVEST MI 230.00 1                                                                                                                                                     | 103.25           | 96.46           | 107.04           | 105.37           | 111.59           | 78.11          | 71.84          | 89.37                      | 78.56          | 83.53            |
| 70112 CLARK 230.00 70241 JORDAN 230.00 1                                                                                                                                                              | 96.44            | 100.32          | 90.21            | 98.48            | 114.02           | 81.34          | 87.63          | 75.52                      | 83.52          | 94.89            |
| 70090 FORT_LUPTON2115.00 70192 FORT_LUPTON 230.00 T3                                                                                                                                                  | 96.31            | 98.49           | 98.84            | 100              | 102.44           | 95.26          | 98.56          | 97.03                      | 97.45          | 101.93           |
| 70212 GREENWOOD_1 230.00 70331 PRAIRIE_1 230.00 2                                                                                                                                                     | 103.36           | 87.43           | 113.37           | 102.57           | 114.47           | 74.35          | 63.15          | 82.88                      | 74.22          | 82.78            |
| 70239 JEWELL2 230.00 70260 LEETSDALE 230.00 1                                                                                                                                                         | 99.19            | 91.87           | 103.2            | 101.71           | 120.69           | 59.1           | 55.28          | 61.82                      | 60.38          | 71.04            |
| 70215 HARRISON_PS1115.00 70282 LEETSDALE_2 115.00 1                                                                                                                                                   | 100.6            | 88.01           | 157.63           | 173.73           | 185.78           | 51.22          | 48.56          | 55.3                       | 52.02          | 79.49            |
| 70038 ARAPAHOE 230.00 70189 GREENWOOD_2 230.00 1<br>70463 WATERTON 115.00 70483 WATERTN TP 115.00 1                                                                                                   | 100.55<br>95.89  | 89.29<br>91     | 106.43<br>101.68 | 101.07<br>96.49  | 118.29<br>109.52 | 75.27<br>85.68 | 67.11<br>82.67 | 81.04<br>85.46             | 75.93<br>85.7  | 86.91<br>87.94   |
| 70110 CHEROKEE N 115.00 70483 WATERIN_TP 115.001                                                                                                                                                      | 95.89            | 87.65           | 96.24            | 95.56            | 90.48            | 63.78          | 57.55          | 62.85                      | 62.23          | 54.2             |
| 70198 GILCREST 115.00 70219 ANADARKO_TAP115.00 1                                                                                                                                                      | 92.64            | 93.1            | 87.46            | 93.53            | 101.02           | 85.25          | 87.82          | 80.97                      | 84.45          | 95.58            |
| 70208 GRAY_STREET 115:00 70252 LAKEWOOD_2 115:00 2                                                                                                                                                    | 100              | 84.1            | 95.62            | 96.51            | 71.65            | 96.28          | 83.1           | 99.67                      | 94.31          | 84.78            |
| 70208 GRAY_STREET 115.00 70251 LAKEWOOD_1 115.00 1                                                                                                                                                    | 97.49            | 81.56           | 93.51            | 94.03            | 66.82            | 94.09          | 80.76          | 97.36                      | 92.1           | 82.47            |
| 70198 GILCREST 115.00 70202 GODFRETP 115.00 1                                                                                                                                                         | 89.28            | 89.59           | 84.55            | 90.07            | 96.79            | 82.54          | 84.82          | 78.67                      | 81.78          | 91.81            |
| 70036 ARAP_A 115.00 70531 AIR_LIQ_TP 115.00 1                                                                                                                                                         | 95.31            | 86.21           | 95.21            | 94.1             | 89.99            | 76.89          | 77.03          | 81.91                      | 78.98          | 96.91            |
| 70283 MEADOWHL 230.00 70396 SMOKY_HILL 230.00 1                                                                                                                                                       | 86.92            | 88.65           | 82.75            | 87.4             | 97.45            | 77.59          | 80.79          | 74.19                      | 78.55          | 85.8             |
| 70144 DENVER_TRM_2115.00 70148 DENVER_TRM_1115.00 1                                                                                                                                                   | 101.27           | 73.22           | 114.24           | 89.1             | 130.86           | 49.11          | 58.51          | 75.46                      | 66.08          | 82.55            |
| 70126 CONOCO 115.00 70377 SANDOWN 115.00 1                                                                                                                                                            | 100.15<br>99.26  | 84.46           | 81.83            | 94.13<br>88.28   | 55.03<br>32.69   | 66.00          |                | r to CONOCO to NEW         |                | 56.26            |
| 70074 CALIFORN_TP 115.00 70087 CAPITOL_HILL115.00 1                                                                                                                                                   |                  | 78.41           | 65.09            |                  | 32.69            | 66.98          | 67.06          | 65.66                      | 66.72          | 56.26            |
| 70074 CALIFORN_TP 115.00 70276 MAPLETO1 115.00 1<br>70277 MAPLETO2 115.00 70377 SANDOWN 115.00 1                                                                                                      | 99.26<br>98.23   | 78.41<br>90.68  | 65.11<br>80.53   | 88.28<br>115.46  | 48.58            | 66.98          | 67.06          | 65.66<br>MAPLETO2 to NEW S | 66.72          | 56.26            |
| 70277 MAPLETOZ 115.00 70377 SANDOWN 115.00 1<br>70108 CHEROKEE \$ 115.00 70276 MAPLETO1 115.00 2                                                                                                      | 98.23            | 90.68<br>76.99  | 66.47            | 85.16            | 48.58 28.47      | 69.48          | 69.52          | 68.5                       | 69.24          | 61.59            |
| 70108 CHEROKEE \$ 115.00 70298 NORTH PS 115.00 1                                                                                                                                                      | 90.72            | 87.76           | 83.45            | 99.74            | 54.03            | 60.7           | 66.15          | 60.66                      | 59.88          | 47.12            |
| 70139 DANIELPK 230.00 73477 FULLER 230.00 1                                                                                                                                                           | 81.67            | 41.12           | 111.85           | 75.54            | 89.72            | 78.81          | 38.43          | 110.47                     | 72.86          | 86.08            |
| 70036 ARAP_A 115.00 70037 ARAP_B 115.00 1                                                                                                                                                             | 89.44            | 85.44           | 103.43           | 90.39            | 103.06           | 61.21          | 57.89          | 66.42                      | 61.56          | 74.54            |
| 70037 ARAP_B 115.00 70401 SOUTH_TAP 115.00 1                                                                                                                                                          | 79.85            | 75.07           | 97.7             | 83.98            | 101.84           | 61.34          | 57.33          | 65.02                      | 61.51          | 69.97            |
| 70260 LEETSDALE 230.00 70282 LEETSDALE_2 115.00 T5                                                                                                                                                    | 79.22            | 74.58           | 96.69            | 103.57           | 110.99           | 65.07          | 61.04          | 71.49                      | 68.07          | 95.51            |
| 70259 LEETSDALE_1 115.00 70282 LEETSDALE_2 115.00 1                                                                                                                                                   | 86.97            | 86.25           | 96.12            | 99.32            | 103.09           | 65.84          | 61.32          | 77.44                      | 71.25          | 116.93           |
| 70312 RAY_LEWI 115.00 70327 PONCHA_E 115.00 1                                                                                                                                                         | 87.05            | 42.06           | 94.82            | 80.62            | 90.98            | 85.2           | 42.34          | 93.23                      | 78.79          | 89.12            |
| 70596 HARVEST_MI 230.00 70597 HARVEST_MI 345.00 T1                                                                                                                                                    | 89.04            | 83.98           | 93.09            | 91.38            | 95.85            | 68.02          | 64.08          | 76.31                      | 69.91          | 73.58            |
| 70596 HARVEST_MI 230.00 70597 HARVEST_MI 345.00 T2<br>70263 LITTLET1 115.00 70483 WATERTN TP 115.00 1                                                                                                 | 89.04<br>85.46   | 83.98<br>80.73  | 93.09<br>91.35   | 91.38<br>86.13   | 95.85<br>99.11   | 68.02<br>75.08 | 64.08<br>72.42 | 76.31<br>75                | 69.91<br>75.1  | 73.58<br>77.6    |
| 70205 LITTLETT 115.00 70483 WATEKIN_IP 115.00 1                                                                                                                                                       | 05.40            | 00.73           | 91.35            | 00.13            | 99.11            | 75.08          | 12.42          | /5                         | /3.1           | //.0             |

| 2028                                                | Pre Mitigation                                                                          |               |                 |                  |             | Post Mitigation |            |                    |                  |             |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------|---------------|-----------------|------------------|-------------|-----------------|------------|--------------------|------------------|-------------|
| <> MONITORED_BRANCH>                                | Peak                                                                                    | Twilight      | Comanche Stress | Pathway Stress   | No Cherokee | Peak            | Twilight   | Comanche Stress    | Pathway Stress   | No Cherokee |
|                                                     |                                                                                         |               |                 |                  |             |                 |            |                    |                  |             |
| 70395 SMOKY_HILL_N115.00 3WNDTR WND 2 T1            | 89.34                                                                                   | 88.7          | 90.98           | 89.86            | 94.86       | 87.65           | 84.3       | 89.54              | 88.63            | 95.96       |
| 70259 LEETSDALE_1 115.00 70260 LEETSDALE 230.00 T4  | 84.81                                                                                   | 79.72         | 90.92           | 90.1             | 129.67      | 66.7            | 62.85      | 73.25              | 69.45            | 97.54       |
| 70182 HARRISON_PS2115.00 70215 HARRISON_PS1115.00 1 | 47.06                                                                                   | 39.74         | 86.35           | 95.6             | 97.05       | 68.4            | 64.18      | 74.87              | 69.68            | 113.27      |
| 70073 CALIFORNIA 115.00 70108 CHEROKEE_S 115.00 1   | 89.56                                                                                   | 75.14         | 64.36           | 95.26            | 39.56       |                 | See        | CHEROKEE_S to NEW_ | SUB_A entry      |             |
| 70154 DERBY_2 115.00 70216 HAVANA1 115.00 1         | 82.64                                                                                   | 77.05         | 86.49           | 88.12            | 101.05      | 70.32           | 65.6       | 73.13              | 71.66            | 97.06       |
| 70040 ARSENAL 115.00 70217 HAVANA2 115.00 1         | 78.05                                                                                   | 72.76         | 81.72           | 83.67            | 95.67       | 66.6            | 62.14      | 69.18              | 67.88            | 91.93       |
| 70481 MONACO_12 230.00 770189 GREE-SR 230.00 1      |                                                                                         | Refer to GREE | NWOOD_2 230.00  | to MONACO_12 ent | ry          | 84.86           | 76.8       | 91.69              | 85.61            | 98.98       |
| 70189 GREENWOOD_2 230.00 770189 GREE-SR 230.00 2    |                                                                                         | Refer to GREE | NWOOD_2 230.00  | to MONACO_12 ent | ry          | 84.85           | 76.79      | 91.69              | 85.61            | 98.97       |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T6  |                                                                                         |               |                 |                  |             | 87.24           | 83.13      | 90.81              | 89.75            | 94.52       |
| 70038 ARAPAHOE 230.00 70527 SANTA_FE 230.00 1       | 71.09                                                                                   | 61.42         | 76.73           | 71.33            | 82.45       | 82.42           | 72.09      | 90.08              | 83.09            | 95.79       |
| 70036 ARAP_A 115.00 70441 UNIVERS1 115.00 1         | 62.25                                                                                   | 59.77         | 73.5            | 64.48            | 64.41       | 64.13           | 63.19      | 75.57              | 66.79            | 101.47      |
| 70402 SOUTH 115.00 70531 AIR_LIQ_TP 115.00 1        | 85.01                                                                                   | 76.12         | 84.99           | 83.81            | 79.8        | 84.29           | 84.54      | 89.23              | 86.37            | 103.41      |
| 70277 MAPLETO2 115.00 770277 NEW_SUB_A 115.00 1     | Refer to MAPLETO2 to SANDOWN entry                                                      |               |                 |                  |             | 72.14           | 74.33      | 65.79              | 74.03            | 21.65       |
| 70126 CONOCO 115.00 770277 NEW_SUB_A 115.00 1       | Refer to CONOCO to SANDOWN entry         75.92         71.42         71.28         78.3 |               |                 |                  |             | 34.18           |            |                    |                  |             |
| 70189 GREENWOOD_2 230.00 70481 MONACO_12 230.00 1   | 146.96                                                                                  | 133.35        | 153.36          | 147.32           | 172.05      |                 | Refer to G | REENWOOD_2 230.00  | to GREE-SR entry |             |

| 2030 Clean Energy                                                                                 |                    |
|---------------------------------------------------------------------------------------------------|--------------------|
| <>MONITORED_BRANCH>                                                                               | Peak + 1GW<br>Wind |
| 70189 GREENWOOD 2 230.00 70212 GREENWOOD 1 230.00 1                                               | 93.02              |
| 70107 CHEROKEE 230.00 70108 CHEROKEE S 115.00 T1                                                  | 57.45              |
| 70148 DENVER TRM 1115.00 70208 GRAY STREET 115.00 1                                               | 54.06              |
| 70365 SULLIVN2 230.00 70481 MONACO 12 230.00 1                                                    | 93.8               |
| 70045 BANCROFT 115.00 70208 GRAY STREET 115.00 1                                                  | 87.48              |
| 70139 DANIELPK 230.00 70323 PRAIRIE 3 230.00 2                                                    | 90.44              |
| 70108 CHEROKEE S 115.00 70277 MAPLETO2 115.00 1                                                   | 79.28              |
| 70653 TUNDRA 345.00 70654 COMANCHE 345.00 2                                                       | 36.2               |
| 70046 BUCKLEY2 230.00 70396 SMOKY_HILL 230.00 1                                                   | 86.67              |
| 70653 TUNDRA 345.00 70654 COMANCHE 345.00 1                                                       | 35.84              |
| 70046 BUCKLEY2 230.00 70491 TOLLGATE 230.00 1                                                     | 86.67              |
| 70037 ARAP B 115.00 70038 ARAPAHOE 230.00 T5                                                      | 81.92              |
| 70087 CAPITOL_HILL115.00 70148 DENVER_TRM_1115.00 1                                               | Open               |
| 70260 LEETSDALE 230.00 70291 MONROEPS 230.00 1                                                    | 64.95              |
| 70200 LELISDALE 230.00 70231 MONROLPS 230.00 1<br>70244 LAFAYETTE 115.00 70444 VALMONT 1 115.00 1 | 102.56             |
| 70189 GREENWOOD 2 230.00 70323 PRAIRIE 3 230.00 1                                                 | 84.88              |
|                                                                                                   | 76.96              |
| 70260 LEETSDALE 230.00 70365 SULLIVN2 230.00 1                                                    |                    |
| 70538 CHAMBERS 115.00 70539 CHMBERS 230.00 T1                                                     | 96.18              |
| 70538 CHAMBERS 115.00 70539 CHMBERS 230.00 T2                                                     | 96.18              |
| 73211 WELD LM 115.00 73212 WELD LM 230.00 1                                                       | 94.78              |
| 70259 LEETSDALE_1 115.00 70441 UNIVERS1 115.00 1                                                  | 48.87              |
| 70020 CASTLRCK_TP1115.00 70091 CASTLRCK 115.00 1                                                  | 101.95             |
| 70163 ELATI1 230.00 70291 MONROEPS 230.00 1                                                       | 56.96              |
| 70139 DANIELPK 230.00 70601 DANIELPK 345.00 T3                                                    | 94.2               |
| 70139 DANIELPK 230.00 70601 DANIELPK 345.00 T4                                                    | 94.2               |
| 70139 DANIELPK 230.00 70601 DANIELPK 345.00 T5                                                    | 94.2               |
| 70149 DENVER_TERM 230.00 70163 ELATI1 230.00 1                                                    | 47.94              |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T4                                                | 97.13              |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T5                                                | 97.13              |
| 70139 DANIELPK 230.00 70331 PRAIRIE_1 230.00 1                                                    | 87.75              |
| 70239 JEWELL2 230.00 70491 TOLLGATE 230.00 1                                                      | 74.84              |
| 70217 HAVANA2 115.00 70538 CHAMBERS 115.00 2                                                      | 103.64             |
| 70216 HAVANA1 115.00 70538 CHAMBERS 115.00 1                                                      | 100.99             |
| 70396 SMOKY_HILL 230.00 70596 HARVEST_MI 230.00 1                                                 | 87.03              |
| 70112 CLARK 230.00 70241 JORDAN 230.00 1                                                          | 95.07              |
| 70090 FORT_LUPTON2115.00 70192 FORT_LUPTON 230.00 T3                                              | <mark>98.34</mark> |
| 70212 GREENWOOD_1 230.00 70331 PRAIRIE_1 230.00 2                                                 | 79.8               |
| 70239 JEWELL2 230.00 70260 LEETSDALE 230.00 1                                                     | 68.08              |
| 70215 HARRISON_PS1115.00 70282 LEETSDALE_2 115.00 1                                               | 57.17              |
| 70038 ARAPAHOE 230.00 70189 GREENWOOD_2 230.00 1                                                  | 83.4               |
| 70463 WATERTON 115.00 70483 WATERTN_TP 115.00 1                                                   | 91.07              |
| 70110 CHEROKEE_N 115.00 70174 FEDERHT23 115.00 1                                                  | 65.57              |
| 70198 GILCREST 115.00 70219 ANADARKO_TAP115.00 1                                                  | 86.31              |
| 70208 GRAY_STREET 115.00 70252 LAKEWOOD_2 115.00 2                                                | 101.86             |
| 70208 GRAY_STREET 115.00 70251 LAKEWOOD_1 115.00 1                                                | 99.31              |
| 70198 GILCREST 115.00 70202 GODFRETP 115.00 1                                                     | 83.79              |
| 70036 ARAP_A 115.00 70531 AIR_LIQ_TP 115.00 1                                                     | 85.55              |
| 70283 MEADOWHL 230.00 70396 SMOKY_HILL 230.00 1                                                   | 86.16              |
| 70144 DENVER TRM 2115.00 70148 DENVER TRM 1115.00 1                                               | 56.09              |

| 2030 Clean Energy                                   | ]          |
|-----------------------------------------------------|------------|
| <>                                                  | Peak + 1GW |
|                                                     | Wind       |
| 70074 CALIFORN_TP 115.00 70087 CAPITOL_HILL115.00 1 | 68.17      |
| 70074 CALIFORN_TP 115.00 70276 MAPLETO1 115.00 1    | 68.17      |
| 70108 CHEROKEE_S 115.00 70276 MAPLETO1 115.00 2     | 71.2       |
| 70108 CHEROKEE_S 115.00 70298 NORTH_PS 115.00 1     | 58.53      |
| 70139 DANIELPK 230.00 73477 FULLER 230.00 1         | 66.89      |
| 70036 ARAP_A 115.00 70037 ARAP_B 115.00 1           | 66.91      |
| 70037 ARAP_B 115.00 70401 SOUTH_TAP 115.00 1        | 66.22      |
| 70260 LEETSDALE 230.00 70282 LEETSDALE_2 115.00 T5  | 77.22      |
| 70259 LEETSDALE_1 115.00 70282 LEETSDALE_2 115.00 1 | 82.52      |
| 70312 RAY_LEWI 115.00 70327 PONCHA_E 115.00 1       | 69.72      |
| 70596 HARVEST_MI 230.00 70597 HARVEST_MI 345.00 T1  | 75.49      |
| 70596 HARVEST_MI 230.00 70597 HARVEST_MI 345.00 T2  | 75.49      |
| 70263 LITTLET1 115.00 70483 WATERTN_TP 115.00 1     | 79.83      |
| 70395 SMOKY_HILL_N115.00 3WNDTR WND 2 T1            | 98.32      |
| 70259 LEETSDALE_1 115.00 70260 LEETSDALE 230.00 T4  | 80.42      |
| 70182 HARRISON_PS2115.00 70215 HARRISON_PS1115.00 1 | 77.29      |
| 70154 DERBY_2 115.00 70216 HAVANA1 115.00 1         | 78.3       |
| 70040 ARSENAL 115.00 70217 HAVANA2 115.00 1         | 73.68      |
| 70481 MONACO_12 230.00 770189 GREE-SR 230.00 1      | 93.9       |
| 70189 GREENWOOD_2 230.00 770189 GREE-SR 230.00 2    | 93.9       |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T6  | 97.13      |
| 70038 ARAPAHOE 230.00 70527 SANTA_FE 230.00 1       | 91.54      |
| 70036 ARAP_A 115.00 70441 UNIVERS1 115.00 1         | 75.64      |
| 70402 SOUTH 115.00 70531 AIR_LIQ_TP 115.00 1        | 92.27      |
| 70277 MAPLETO2 115.00 770277 NEW_SUB_A 115.00 1     | 68.89      |
| 70126 CONOCO 115.00 770277 NEW_SUB_A 115.00 1       | 73.23      |

| 2031 JTS Look Ahead                                  |                        |
|------------------------------------------------------|------------------------|
| <>                                                   | Peak JTS Look<br>Ahead |
| 70189 GREENWOOD_2 230.00 70212 GREENWOOD_1 230.00 1  | 90.83                  |
| 70107 CHEROKEE 230.00 70108 CHEROKEE_S 115.00 T1     | 44.33                  |
| 70148 DENVER_TRM_1115.00 70208 GRAY_STREET 115.00 1  | 59.38                  |
| 70365 SULLIVN2 230.00 70481 MONACO_12 230.00 1       | 90.39                  |
| 70045 BANCROFT 115.00 70208 GRAY_STREET 115.00 1     | 93.92                  |
| 70139 DANIELPK 230.00 70323 PRAIRIE_3 230.00 2       | 88.94                  |
| 70108 CHEROKEE_S 115.00 70277 MAPLETO2 115.00 1      | 88.33                  |
| 70653 TUNDRA 345.00 70654 COMANCHE 345.00 2          | 46.1                   |
| 70046 BUCKLEY2 230.00 70396 SMOKY_HILL 230.00 1      | 84.84                  |
| 70653 TUNDRA 345.00 70654 COMANCHE 345.00 1          | 45.64                  |
| 70046 BUCKLEY2 230.00 70491 TOLLGATE 230.00 1        | 84.86                  |
| 70037 ARAP_B 115.00 70038 ARAPAHOE 230.00 T5         | 79.33                  |
| 70087 CAPITOL_HILL115.00 70148 DENVER_TRM_1115.00 1  | Open                   |
| 70260 LEETSDALE 230.00 70291 MONROEPS 230.00 1       | 60.2                   |
| 70244 LAFAYETTE 115.00 70444 VALMONT_1 115.00 1      | 105.36                 |
| 70189 GREENWOOD_2 230.00 70323 PRAIRIE_3 230.00 1    | 83.08                  |
| 70260 LEETSDALE 230.00 70365 SULLIVN2 230.00 1       | 70.77                  |
| 70538 CHAMBERS 115.00 70539 CHMBERS 230.00 T1        | 99.82                  |
| 70538 CHAMBERS 115.00 70539 CHMBERS 230.00 T2        | 99.82                  |
| 73211 WELD LM 115.00 73212 WELD LM 230.00 1          | 97.87                  |
| 70259 LEETSDALE_1 115.00 70441 UNIVERS1 115.00 1     | 49.84                  |
| 70020 CASTLRCK_TP1115.00 70091 CASTLRCK 115.00 1     | 100.63                 |
| 70163 ELATI1 230.00 70291 MONROEPS 230.00 1          | 51.56                  |
| 70139 DANIELPK 230.00 70601 DANIELPK 345.00 T3       | 89.22                  |
| 70139 DANIELPK 230.00 70601 DANIELPK 345.00 T4       | 89.22                  |
| 70139 DANIELPK 230.00 70601 DANIELPK 345.00 T5       | 89.22                  |
| 70149 DENVER_TERM 230.00 70163 ELATI1 230.00 1       | 41.91                  |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T4   | 90.17                  |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T5   | 90.17                  |
| 70139 DANIELPK 230.00 70331 PRAIRIE_1 230.00 1       | 87.35                  |
| 70239 JEWELL2 230.00 70491 TOLLGATE 230.00 1         | 71.67                  |
| 70217 HAVANA2 115.00 70538 CHAMBERS 115.00 2         | 100.33                 |
| 70216 HAVANA1 115.00 70538 CHAMBERS 115.00 1         | 97.44                  |
| 70396 SMOKY_HILL 230.00 70596 HARVEST_MI 230.00 1    | 80.91                  |
| 70112 CLARK 230.00 70241 JORDAN 230.00 1             | 93.11                  |
| 70090 FORT_LUPTON2115.00 70192 FORT_LUPTON 230.00 T3 | 99.89                  |
| 70212 GREENWOOD_1 230.00 70331 PRAIRIE_1 230.00 2    | 78.94                  |
| 70239 JEWELL2 230.00 70260 LEETSDALE 230.00 1        | 63.98                  |
| 70215 HARRISON_PS1115.00 70282 LEETSDALE_2 115.00 1  | 55.69                  |
| 70038 ARAPAHOE 230.00 70189 GREENWOOD_2 230.00 1     | 80.92                  |
| 70463 WATERTON 115.00 70483 WATERTN_TP 115.00 1      | 94.18                  |
| 70110 CHEROKEE_N 115.00 70174 FEDERHT23 115.00 1     | 68.72                  |
| 70198 GILCREST 115.00 70219 ANADARKO_TAP115.00 1     | 92.33                  |

| 2031 JTS Look Ahead                                 |               |
|-----------------------------------------------------|---------------|
| <>                                                  | Peak JTS Look |
|                                                     | Ahead         |
| 70208 GRAY_STREET 115.00 70252 LAKEWOOD_2 115.00 2  | 107.96        |
| 70208 GRAY_STREET 115.00 70251 LAKEWOOD_1 115.00 1  | 104.98        |
| 70198 GILCREST 115.00 70202 GODFRETP 115.00 1       | 89.4          |
| 70036 ARAP_A 115.00 70531 AIR_LIQ_TP 115.00 1       | 81.84         |
| 70283 MEADOWHL 230.00 70396 SMOKY_HILL 230.00 1     | 87.33         |
| 70144 DENVER_TRM_2115.00 70148 DENVER_TRM_1115.00 1 | 54.68         |
| 70074 CALIFORN_TP 115.00 70087 CAPITOL_HILL115.00 1 | 71.43         |
| 70074 CALIFORN_TP 115.00 70276 MAPLETO1 115.00 1    | 71.43         |
| 70108 CHEROKEE_S 115.00 70276 MAPLETO1 115.00 2     | 74.18         |
| 70108 CHEROKEE_S 115.00 70298 NORTH_PS 115.00 1     | 63.94         |
| 70139 DANIELPK 230.00 73477 FULLER 230.00 1         | 80.27         |
| 70036 ARAP_A 115.00 70037 ARAP_B 115.00 1           | 64.51         |
| 70037 ARAP_B 115.00 70401 SOUTH_TAP 115.00 1        | 65.73         |
| 70260 LEETSDALE 230.00 70282 LEETSDALE_2 115.00 T5  | 72.17         |
| 70259 LEETSDALE_1 115.00 70282 LEETSDALE_2 115.00 1 | 70.72         |
| 70312 RAY_LEWI 115.00 70327 PONCHA_E 115.00 1       | 125.87        |
| 70596 HARVEST_MI 230.00 70597 HARVEST_MI 345.00 T1  | 70.15         |
| 70596 HARVEST_MI 230.00 70597 HARVEST_MI 345.00 T2  | 70.15         |
| 70263 LITTLET1 115.00 70483 WATERTN_TP 115.00 1     | 82.56         |
| 70395 SMOKY_HILL_N115.00 3WNDTR WND 2 T1            | 91.67         |
| 70259 LEETSDALE_1 115.00 70260 LEETSDALE 230.00 T4  | 74            |
| 70182 HARRISON_PS2115.00 70215 HARRISON_PS1115.00 1 | 74.64         |
| 70154 DERBY_2 115.00 70216 HAVANA1 115.00 1         | 74.31         |
| 70040 ARSENAL 115.00 70217 HAVANA2 115.00 1         | 69.67         |
| 70481 MONACO_12 230.00 770189 GREE-SR 230.00 1      | 91.65         |
| 70189 GREENWOOD_2 230.00 770189 GREE-SR 230.00 2    | 91.64         |
| 70396 SMOKY_HILL 230.00 70599 SMOKY_HILL 345.00 T6  | 90.17         |
| 70038 ARAPAHOE 230.00 70527 SANTA_FE 230.00 1       | 87.94         |
| 70036 ARAP_A 115.00 70441 UNIVERS1 115.00 1         | 68.77         |
| 70402 SOUTH 115.00 70531 AIR_LIQ_TP 115.00 1        | 89.26         |
| 70277 MAPLETO2 115.00 770277 NEW_SUB_A 115.00 1     | 77.42         |
| 70126 CONOCO 115.00 770277 NEW_SUB_A 115.00 1       | 87.9          |

|                                                          |                    |           | 25 Pe      | Pak                                                      |                    |         |           |  |
|----------------------------------------------------------|--------------------|-----------|------------|----------------------------------------------------------|--------------------|---------|-----------|--|
| Violations                                               |                    | Deviation |            |                                                          |                    |         |           |  |
| Contingency                                              | Bus                | Voltage   | Violation  | Contingency                                              | Bus                | Voltage | Violation |  |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |           |            | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |         |           |  |
| [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8571    | 0.0529     | [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8571  | 0.0447    |  |
|                                                          |                    |           |            |                                                          |                    |         |           |  |
|                                                          |                    |           |            |                                                          |                    |         |           |  |
|                                                          |                    |           | 25 No Ch   |                                                          |                    |         |           |  |
| Violations                                               |                    |           |            | Deviation                                                |                    |         |           |  |
| Contingency                                              | Bus                | Voltage   | Violation  | Contingency                                              | Bus                | Voltage | Violation |  |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |           |            | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |         |           |  |
| [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8619    | 0.0481     | [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8619  | 0.0452    |  |
|                                                          |                    |           |            |                                                          |                    |         |           |  |
|                                                          |                    |           |            |                                                          |                    |         |           |  |
|                                                          |                    |           | 25 Comanch | hee Stress                                               |                    |         |           |  |
| Violations                                               |                    |           |            | Deviation                                                |                    |         |           |  |
| Contingency                                              | Bus                | Voltage   | Violation  | Contingency                                              | Bus                | Voltage | Violation |  |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |           |            | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |         |           |  |
| [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8546    | 0.0554     | [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8546  | 0.0497    |  |
|                                                          |                    |           |            |                                                          |                    |         |           |  |

|                                                                                      |                    |         | 26 Peak      |                                                                                      |                                               |         |          |
|--------------------------------------------------------------------------------------|--------------------|---------|--------------|--------------------------------------------------------------------------------------|-----------------------------------------------|---------|----------|
| Violations                                                                           |                    |         | 20 Peak      | Devation                                                                             |                                               |         |          |
| Contingency                                                                          | Bus                | Voltage | Violation    | Contingency                                                                          | Bus                                           | Voltage | Violatio |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444                             |                    | 1       |              | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS                                   |                                               |         |          |
| [VALMONT 1 115.00] CKT 1                                                             | 70244 LAFAYETTE 11 | 0.8752  | 0.0348       | 70444 [VALMONT 1 115.00] CKT 1                                                       | 70244 LAFAYETTE 11                            | 0.8752  | 0.0375   |
|                                                                                      |                    |         |              | OPEN LINE FROM BUS 70463 [WATERTON 115.00] TO                                        |                                               |         |          |
|                                                                                      | 1                  |         |              | BUS 70483 [WATERTN_TP 115.00] CKT 1                                                  | 70279 MARTIN_1 11                             | 0.9388  | 0.0026   |
|                                                                                      | 1                  |         |              | OPEN LINE FROM BUS 70463 [WATERTON 115.00] TO                                        |                                               |         |          |
|                                                                                      | L                  |         |              | BUS 70483 [WATERTN_TP 115.00] CKT 1                                                  | 70483 WATERTN_TP 11                           | 0.9399  | 0.002    |
|                                                                                      |                    |         |              |                                                                                      |                                               |         |          |
| Violations                                                                           |                    |         | 26 Twiligh   | nt<br>Devation                                                                       |                                               |         |          |
| Contingency                                                                          | Bus                | Voltage | Violation    | Contingency                                                                          | Bus                                           | Voltage | Violati  |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444                             | Bus                | Voltage | VIOIALIOII   | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS                                   | Bus                                           | voitage | Violatit |
| [VALMONT 1 115.00] CKT 1                                                             | 70244 LAFAYETTE 11 | 0.8591  | 0.0509       | 70444 [VALMONT 1 115.00] CKT 1                                                       | 70244 LAFAYETTE 11                            | 0.8591  | 0.045    |
|                                                                                      |                    | 0.0551  | 0.0509       | OPEN LINE FROM BUS 70463 [WATERTON 115.00] TO                                        | 10244 LAIAILIIL II                            | 0.0331  | 0.043    |
|                                                                                      | 1                  |         |              | BUS 70483 [WATERTN TP 115.00] CKT 1                                                  | 70279 MARTIN 1 11                             | 0.9278  | 0.0096   |
|                                                                                      | [                  |         |              | OPEN LINE FROM BUS 70463 [WATERTON 115.00] TO                                        | , <u>, , , , , , , , , , , , , , , , , , </u> | 0.5270  | 0.005    |
|                                                                                      |                    |         |              | BUS 70483 [WATERTN_TP 115.00] CKT 1                                                  | 70483 WATERTN_TP 11                           | 0.929   | 0.009    |
|                                                                                      |                    |         |              |                                                                                      |                                               |         |          |
|                                                                                      |                    |         | 26 Comanche  | Stress                                                                               |                                               |         |          |
| Violations                                                                           |                    |         |              | Devation                                                                             |                                               |         |          |
| Contingency                                                                          | Bus                | Voltage | Violation    | Contingency                                                                          | Bus                                           | Voltage | Violatio |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444                             | 1                  |         |              | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS                                   |                                               |         |          |
| [VALMONT_1 115.00] CKT 1                                                             | 70244 LAFAYETTE 11 | 0.875   | 0.035        | 70444 [VALMONT_1 115.00] CKT 1                                                       | 70244 LAFAYETTE 11                            | 0.875   | 0.0366   |
|                                                                                      | 1                  |         |              | OPEN LINE FROM BUS 70463 [WATERTON 115.00] TO                                        |                                               |         |          |
|                                                                                      | L                  | L       |              | BUS 70483 [WATERTN_TP 115.00] CKT 1                                                  | 70279 MARTIN_1 11                             | 0.9341  | 0.0003   |
|                                                                                      | 1                  |         |              | OPEN LINE FROM BUS 70463 [WATERTON 115.00] TO                                        |                                               |         |          |
|                                                                                      | L                  | L       |              | BUS 70483 [WATERTN_TP 115.00] CKT 1                                                  | 70483 WATERTN_TP 11                           | 0.9353  | 0.000    |
|                                                                                      |                    |         |              |                                                                                      |                                               |         |          |
|                                                                                      |                    |         | 26 Pathway S |                                                                                      |                                               |         |          |
| Violations                                                                           |                    |         |              | Devation                                                                             |                                               |         |          |
| Contingency                                                                          | Bus                | Voltage | Violation    | Contingency                                                                          | Bus                                           | Voltage | Violatio |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444                             |                    | 0.0545  |              | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS                                   |                                               | 0.0515  |          |
| [VALMONT_1 115.00] CKT 1                                                             | 70244 LAFAYETTE 11 | 0.8616  | 0.0484       | 70444 [VALMONT_1 115.00] CKT 1                                                       | 70244 LAFAYETTE 11                            | 0.8616  | 0.042    |
|                                                                                      | l                  |         |              | OPEN LINE FROM BUS 70463 [WATERTON 115.00] TO                                        |                                               | 0.0274  | 0.000    |
|                                                                                      | <u> </u>           | +       |              | BUS 70483 [WATERTN_TP 115.00] CKT 1<br>OPEN LINE FROM BUS 70463 [WATERTON 115.00] TO | 70279 MARTIN_1 11                             | 0.9274  | 0.001    |
|                                                                                      | l                  |         |              | BUS 70483 [WATERTN TP 115.00] CKT 1                                                  | 70483 WATERTN TP 11                           | 0.9286  | 0.001    |
|                                                                                      |                    | 4       |              | 50570405 [WATERIN_11 115.00] CK11                                                    | 70485 WATERIN_IT II                           | 0.5280  | 0.001    |
|                                                                                      |                    |         |              |                                                                                      |                                               |         |          |
| Violations                                                                           |                    |         | 26 No Chero  | Devation                                                                             |                                               |         |          |
| Contingency                                                                          | Bus                | Voltage | Violation    | Contingency                                                                          | Bus                                           | Voltage | Violati  |
|                                                                                      |                    |         |              | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS                                   | 240                                           |         |          |
| OPEN LINE FROM BUS 70244 ILAFAYETTE 115.001 TO BUS 70444                             |                    |         |              |                                                                                      |                                               |         |          |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444<br>[VALMONT 1 115.00] CKT 1 | 70244 LAFAYETTE 11 | 0.8863  | 0.0237       | 70444 [VALMONT 1 115.00] CKT 1                                                       | 70244 LAFAYETTE 11                            | 0.8863  | 0.037    |

| Violations                                         |                    |         |           | 27 Peak<br>Deviation                                      | 1                    |         |           |
|----------------------------------------------------|--------------------|---------|-----------|-----------------------------------------------------------|----------------------|---------|-----------|
| Contingency                                        | Bus                | Voltage | Violation | Contingency                                               | Bus                  | Voltage | Violation |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS | Dus                | Voltage | Violation | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444  | 543                  | Voltage | Violation |
| 70444 [VALMONT 1 115.00] CKT 1                     | 70244 LAFAYETTE 11 | 0.8181  | 0.0919    | [VALMONT 1 115.00] CKT 1                                  | 70244 LAFAYETTE 11   | 0.8181  | 0.0922    |
|                                                    |                    | 0.0101  | 0.0515    |                                                           |                      | 0.0101  | 0.0522    |
|                                                    |                    |         |           |                                                           |                      |         |           |
|                                                    |                    |         | 1         | 27 Twilight                                               | T                    | 1       |           |
| Violations                                         | -                  |         |           | Deviation                                                 | _                    |         |           |
| Contingency                                        | Bus                | Voltage | Violation | Contingency                                               | Bus                  | Voltage | Violation |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS |                    |         |           | OPEN LINE FROM BUS 70110 [CHEROKEE_N 115.00] TO BUS 70494 |                      |         |           |
| 70444 [VALMONT_1 115.00] CKT 1                     | 70244 LAFAYETTE 11 | 0.8247  | 0.0853    | [METRO_WATER 115.00] CKT 1                                | 70494 METRO_WATER 11 | 0.9163  | 0.0026    |
|                                                    |                    |         |           | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444  |                      |         |           |
|                                                    |                    |         |           | [VALMONT_1 115.00] CKT 1                                  | 70244 LAFAYETTE 11   | 0.8247  | 0.0767    |
|                                                    |                    |         |           |                                                           |                      |         |           |
|                                                    |                    |         |           | 27 Comanche Stress                                        |                      |         |           |
| Violations                                         |                    |         |           | Deviation                                                 |                      |         |           |
| Contingency                                        | Bus                | Voltage | Violation | Contingency                                               | Bus                  | Voltage | Violation |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS |                    |         |           | OPEN LINE FROM BUS 70110 [CHEROKEE_N 115.00] TO BUS 70494 |                      |         |           |
| 70444 [VALMONT_1 115.00] CKT 1                     | 70244 LAFAYETTE 11 | 0.822   | 0.088     | [METRO_WATER 115.00] CKT 1                                | 70494 METRO_WATER 11 | 0.914   | 0.0038    |
|                                                    |                    |         |           | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444  |                      |         |           |
|                                                    |                    |         |           | [VALMONT_1 115.00] CKT 1                                  | 70244 LAFAYETTE 11   | 0.822   | 0.0789    |
|                                                    |                    |         |           |                                                           |                      |         |           |
|                                                    |                    |         | •         | 27 Pathway Stress                                         | •                    | •       |           |
| Violations                                         |                    |         |           | Deviation                                                 |                      |         |           |
| Contingency                                        | Bus                | Voltage | Violation | Contingency                                               | Bus                  | Voltage | Violation |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS |                    |         |           | OPEN LINE FROM BUS 70110 [CHEROKEE_N 115.00] TO BUS 70494 |                      |         |           |
| 70444 [VALMONT_1 115.00] CKT 1                     | 70244 LAFAYETTE 11 | 0.822   | 0.088     | [METRO_WATER 115.00] CKT 1                                | 70494 METRO_WATER 11 | 0.9134  | 0.0093    |
|                                                    |                    |         |           | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444  | _                    |         |           |
|                                                    |                    |         |           | [VALMONT_1 115.00] CKT 1                                  | 70244 LAFAYETTE 11   | 0.822   | 0.0807    |
|                                                    |                    |         |           |                                                           | <u> </u>             |         |           |
| Violations                                         |                    |         |           | 27 No Cherokee Deviation                                  |                      | 1       |           |
| Contingency                                        | Bus                | Voltage | Violation | Contingency                                               | Bus                  | Voltage | Violation |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS |                    |         |           | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444  |                      |         |           |
| 70444 [VALMONT 1 115.00] CKT 1                     | 70244 LAFAYETTE 11 | 0.8274  | 0.0826    | [VALMONT 1 115.00] CKT 1                                  | 70244 LAFAYETTE 11   | 0.8274  | 0.0843    |
|                                                    | JUL TI CARLENE II  | 0.0274  | 0.0020    |                                                           | ,0244 LAIAILIIL II   | 0.0274  | 0.0045    |

|                                                                                   |                    | 2       | 8 Peak       |                                                          |                    |         |           |
|-----------------------------------------------------------------------------------|--------------------|---------|--------------|----------------------------------------------------------|--------------------|---------|-----------|
| Violations                                                                        |                    |         |              | Deviation                                                |                    |         |           |
| Contingency                                                                       | Bus                | Voltage | Violation    | Contingency                                              | Bus                | Voltage | Violation |
|                                                                                   |                    |         |              | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |         |           |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 [VALMONT_1 115.00] CKT 1 | 70244 LAFAYETTE 11 | 0.8454  | 0.0646       | [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8454  | 0.056     |
|                                                                                   |                    |         |              |                                                          |                    |         |           |
|                                                                                   |                    | 28      | Twilight     |                                                          |                    |         |           |
| Violations                                                                        |                    |         |              | Deviation                                                |                    | 1       | 1         |
| Contingency                                                                       | Bus                | Voltage | Violation    | Contingency                                              | Bus                | Voltage | Violation |
| ¥,                                                                                |                    |         |              | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |         |           |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 [VALMONT 1 115.00] CKT 1 | 70244 LAFAYETTE 11 | 0.8462  | 0.0638       | [VALMONT 1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8462  | 0.0651    |
|                                                                                   |                    |         |              | · • •                                                    |                    |         |           |
|                                                                                   | •                  | -       |              |                                                          |                    |         |           |
|                                                                                   |                    | 28 Com  | anche Stress |                                                          |                    |         |           |
| Violations                                                                        |                    |         |              | Deviation                                                |                    |         |           |
| Contingency                                                                       | Bus                | Voltage | Violation    | Contingency                                              | Bus                | Voltage | Violation |
|                                                                                   |                    |         |              | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |         |           |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 [VALMONT_1 115.00] CKT 1 | 70244 LAFAYETTE 11 | 0.839   | 0.071        | [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.839   | 0.0713    |
|                                                                                   |                    |         |              |                                                          |                    |         |           |
|                                                                                   |                    | 28 Pat  | hway Stress  |                                                          |                    |         |           |
| Violations                                                                        |                    |         |              | Deviation                                                |                    |         |           |
| Contingency                                                                       | Bus                | Voltage | Violation    | Contingency                                              | Bus                | Voltage | Violation |
|                                                                                   |                    |         |              | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |         |           |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 [VALMONT_1 115.00] CKT 1 | 70244 LAFAYETTE 11 | 0.8466  | 0.0634       | [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8466  | 0.0641    |
|                                                                                   |                    |         |              |                                                          |                    |         |           |
|                                                                                   |                    | 28 No   | Cherokee     |                                                          |                    |         |           |
| Violations                                                                        |                    |         |              | Deviation                                                |                    |         |           |
| Contingency                                                                       | Bus                | Voltage | Violation    | Contingency                                              | Bus                | Voltage | Violation |
|                                                                                   |                    |         |              | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |         |           |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 [VALMONT 1 115.00] CKT 1 | 70244 LAFAYETTE 11 | 0.8499  | 0.0601       | [VALMONT 1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8499  | 0.0638    |

| 2030 Clean Energy                                        |                    |         |           |                                                    |                    |         |           |  |
|----------------------------------------------------------|--------------------|---------|-----------|----------------------------------------------------|--------------------|---------|-----------|--|
| Violations                                               |                    |         |           | Deviation                                          |                    |         |           |  |
| Contingency                                              | Bus                | Voltage | Violation | Contingency                                        | Bus                | Voltage | Violation |  |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |                    |         |           | OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS |                    |         |           |  |
| [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAYETTE 11 | 0.8238  | 0.0862    | 70444 [VALMONT_1 115.00] CKT 1                     | 70244 LAFAYETTE 11 | 0.8238  | 0.0726    |  |

| 2031 JTS Look Ahead                                      |             |          |         |           |                                         |       |              |         |           |
|----------------------------------------------------------|-------------|----------|---------|-----------|-----------------------------------------|-------|--------------|---------|-----------|
| Violations                                               |             |          |         |           | Deviation                               |       |              |         |           |
| Contingency                                              | Bus         |          | Voltage | Violation | Contingency                             |       | Bus          | Voltage | Violation |
|                                                          |             |          |         |           | OPEN LINE FROM BUS 70244 [LAFAYETTE     |       |              |         |           |
| OPEN LINE FROM BUS 70244 [LAFAYETTE 115.00] TO BUS 70444 |             |          |         |           | 115.00] TO BUS 70444 [VALMONT_1 115.00] |       |              |         |           |
| [VALMONT_1 115.00] CKT 1                                 | 70244 LAFAY | YETTE 11 | 0.8256  | 0.0844    | CKT 1                                   | 70244 | LAFAYETTE 11 | 0.8256  | 0.0683    |



# FERC Form No. 715 Filing Identification and Certification Form

- 1. Transmitting Utility Name Public Service Company of Colorado
- 2. Transmitting Utility Mailing Address 1800 Larimer St., Suite 400; Denver, CO; 80202
- 3. Contact Person Name\* Gilbert Flores
- 4. Contact Person Title Manager, Transmission Planning West
- 5. Contact Person Phone <u>303-571-7109</u>
- 6. Contact Person Fax <u>303-294-2088</u>
- 7. Contact Person Email Gilbert.Y.Flores@XcelEnergy.com
- 8. Designation of reporting agent for 2024 Filing (check the appropriate item below)
  - a. <u>X</u> WECC is the designated reporting agent for all the required FERC Form No. 715 information for the transmitting utility named on Line 1 above. By checking this option, you must submit to WECC all transmitting-utility-specific information required by FERC.
  - WECC is the designated reporting agent for WECC information required by FERC Form No.
     715 for the transmitting utility named on Line 1 above. By checking this option, the transmitting utility should ensure that all transmitting-utility-specific information required by FERC is submitted directly to FERC.
- 9. Certification by an authorized official of the transmitting utility of the accuracy of the transmitting utility's WECC information and transmitting-utility-specific information included in the WECC 2024 filing.
  Digitally signed by Stephen

| a. Certifying Official Signature* | Stephen Martz Martz Date: 2024.03.18 23:26:02<br>-06'00' |
|-----------------------------------|----------------------------------------------------------|
| b. Certifying Official Name*      | Stephen Martz                                            |
| c. Certifying Official Title      | Vice President, Integrated Planning                      |

\* Transmitting utility employee

#### Part II – Power Flow Base Cases

PSCo is a member of the Western Electricity Coordinating Council (WECC). WECC will submit the most current version of approved Power Flow Data Bases on behalf of PSCo.

Part II has not changed since the last submission.

#### Part III – Maps and Diagrams

The WECC Map of Principal Transmission Lines, and the WECC Map of Planned Facilities Through 2034 and Possible Transmission Beyond This Period, are being filed on PSCo's behalf by the WECC.

PSCo has enclosed the following information of its system:

- Transmission Ownership of Colorado 2024
- PSCo Substation One-Line Diagram Index

#### Part IV – Transmission Reliability Criteria

The WECC requires its member utilities to adhere to the Reliability Criteria approved by its members. These criteria are filed on behalf of PSCo by WECC. PSCo believes these criteria constitute an adequate standard for internal planning and has not adopted supplemental or additional criteria, except as discussed below.

#### Steady State Planning Criteria

| Limits                    | System Intact Condition   | Post-Contingency Condition                       |
|---------------------------|---------------------------|--------------------------------------------------|
| Transmission Line Loading | 100% of Continuous Rating | 100% of Continuous Rating for single contingency |
| Transformer Loading       | 100% of Continuous Rating | 100% of 8-hour rating                            |
| Bus Voltage               | 0.95 to 1.05 per unit     | 0.90 to 1.10 per unit                            |

PSCo also adheres to the criteria agreed upon by the Colorado Coordinated Planning Group (CCPG) for transient stability as well as for identifying potential cascading and/or uncontrolled separations/islanding events.

For planning studies, PSCo adheres to NERC, WECC, and Company Reliability Standards and Criteria. Operationally, PSCo tries to maintain a system voltage profile ranging from 1.02 or higher at generator high side bus to 1.0 or higher at load buses in the Denver-metro area. PSCo has developed a standard rating methodology per NERC's standards for substation facilities and transmission lines.

Part IV has not changed since the last submission.

#### Part V – Assessment Practices

PSCo uses WECC base cases for studies. Generally, the cases are modified to reflect more recent information. In 2023, studies were performed to evaluate system performance through the year 2034. This included various seasonal heavy and light load scenarios as well as different generation dispatch scenarios.

In addition to a standard load and resource portfolio, scenarios were created to model heavy power transfers into the Denver Metro area to evaluate transmission paths internal to the PSCo system for planning purposes. For example, generation interconnection studies in the Midway area south of Denver used a heavy south-to-north transfer by increasing generation south of the metro area and decreasing generation north of the metro area. Likewise, generation interconnection studies in the Missile Site area east of Denver used a heavy east-to-west transfer by increasing generation east of Denver and decreasing generation north of the metro area. Standard planning practices include system analysis for expected peak loading and maximum system power transfers.

To create power flow models, PSCo allocates the company peak load forecast down to individual substation transmission busloads. The reactive (MVAR) busloads are determined from the last seasonal analysis, which uses actual transformer meter readings adjusted to the high side of the distribution transformers. Various power flow cases may be used in the assessment, and may include summer and winter peak cases as well as off-peak or light load cases.

#### Part VI – Performance Evaluation

The PSCo system is comprised of several zones for planning and study purposes. The majority of the load within PSCo's control area lies within the Denver-Boulder metropolitan area. The PSCo transmission system is bounded by transfer path interfaces, referred to as 'TOTs'. These interfaces are defined in the most recent WECC path-rating catalog that is filed by WECC on PSCo's behalf. The

interfaces that frame PSCo include TOTs 2A, 3, 5, and 7.

PSCo regularly performs analysis of system performance as a normal course of business, and adheres to WECC and NERC reliability criteria. System studies model both near-term (within the next five years) and longer-range (10-year) scenarios. Generally, summer peak loading conditions are modeled. However, since some zones within Colorado are winter peaking, sensitivity studies are done using winter peak loading models. PSCo participates in joint study efforts with the Colorado Coordinated Planning Group (CCPG), which includes members from Tri-State Generation & Transmission, Black Hills Energy, Western Area Power Administration, Platte River Power Authority, Colorado Springs Utilities, Basin Electric Power Cooperative, and others in the Rocky Mountain region. As part of the Rocky Mountain Operational Study Group, PSCo performs annual Total Transfer Capability (TTC) studies of TOT 7, and reviews studies of TOTs 1A, 2A, 3 and 5 to ensure the WECC paths are operated within transfer limits.

PSCo meets requirements by the Colorado Public Utilities Commission (CPUC) to perform comprehensive analysis of its system, and provides status reports on a regular basis. Those reports include the Rule 3627 10-Year Transmission Plan, which is filed in February every even year, and includes recommended and planned transmission and generation projects.

#### **Improvement and Mitigation Projects**

The following projects have been implemented, or are planned, in an effort to improve system performance as well as mitigate transmission constraints.

| <u>Ault – Cloverly 230/115kV Transmission</u><br>New transmission and substation facilities at 230kV and 115kV voltage<br>levels will replace 44kV system in the area. To accommodate load-growth<br>and for reliability.                                    | In-Svc Date: | 2024 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|
| <u>Avery Substation</u><br>New distribution substation located in Weld County. The new substation<br>will tap Platte River Power Authority (PRPA) Timberline – Carey 230kV<br>transmission line. For reliability.                                            | In-Svc Date: | 2022 |
| Avon – Gilman 115kV Transmission Line<br>New 115 kV line between Avon and Gilman substations. Also includes a<br>new capacitor bank installation at Vail Substation. Line would be operated<br>normally open but used for emergency backup. For reliability. | In-Svc Date: | 2027 |

| <u>Bluestone Substation</u><br>Phase- I: Bluestone Valley 69 kV Switching station tapping the DeBeque –<br>Cameo 69 kV line.<br>Phase- II: The 230kV portion of the Bluestone Valley Substation project will<br>include tapping the Rifle – Parachute 230 kV line and installing a 230/69 kV<br>transformer to interconnect the 230 kV and 69 kV voltages. For reliability.                              | In-Svc Date: | Ph. I: In-Service<br>2019<br>Ph. II: 2023                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>CEPP Voltage/Reactive Support</u><br>A series of network voltage control devices on the PSCo network needed<br>to accommodate added renewable generation. For resource<br>accommodation and reliability.                                                                                                                                                                                              | In-Svc Date: | 2022                                                                                                                                                                                |
| <u>Colorado's Power Pathway</u><br>New 345 kV transmission facilities built out to Southeast Colorado to<br>access renewable energy in the region.                                                                                                                                                                                                                                                       | In-Svc Date: | Canal Crossing – Goose<br>Creek 2025<br>Goose Creek – May<br>Valley 2025<br>Fort St. Vrain – Canal<br>Crossing 2026<br>May Valley – Tundra<br>2027<br>Tundra – Harvest Mile<br>2027 |
| <u>Comanche Substation – Generation Interconnect (CEPP bid 077)</u><br>Upgrades to Comanche substation to accommodate the Company's CEP<br>portfolio of generation.                                                                                                                                                                                                                                      | In-Svc Date: | 2022                                                                                                                                                                                |
| <u>Greenwood – Denver Terminal 230kV Transmission</u><br>Rebuilding or upgrading existing facilities and transmission corridors to<br>230kV to accommodate the planned addition of renewable resources. For<br>resource accommodation and reliability.                                                                                                                                                   | In-Svc Date: | 2023                                                                                                                                                                                |
| <u>Leetsdale – Elati 230 kV Circuit 5283 Underground Transmission Line</u><br><u>Upgrade</u><br>Build approximately 20 miles of new 230/115 kV transmission and three<br>new substations to replace portions of Public Service's existing 44 kV<br>transmission network in Weld County to increase reliability, load-serving<br>capability and resource interconnection capability in northern Colorado. | In-Svc Date  | 2027                                                                                                                                                                                |
| Mirasol Switching Station (formerly, Badger Hills Substation)<br>New 230 kV Mirasol Switching Station tapping one Comanche – Midway<br>230 kV line. For interconnection of developing resources.                                                                                                                                                                                                         | In-Svc Date  | 2022                                                                                                                                                                                |
| <u>Northern Colorado Area Plan: Ault – Husky – Graham Creek – Cloverly</u><br>Replace 44 kV sub-transmission system with 230 kV transmission system<br>(operated at 115 kV) between Ault – Husky – Graham Creek – Cloverly<br>transmission network. For reliability, load growth and resource<br>accommodation.                                                                                          | In-Svc Date: | 2024                                                                                                                                                                                |

| Sandstone Switching Station<br>Construct a new switching station in Pueblo County as a scope change to<br>Colorado's Power Pathway Project to address engineering and siting<br>challenges with the original scope of the planned expansion of the Tundra<br>Switching Station.                                                                                                                                                                                                                                                | In-Svc Date  | 2027                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|
| Stagecoach Switching Station<br>A new 230 kV switching station to connect GI-2014-9, a 70 MW solar<br>generation facility. The requested Point of Interconnection (POI) for GI-<br>2014-9 is a tap on the Comanche – Midway 230 kV line.                                                                                                                                                                                                                                                                                       | In-Svc Date: | 2025                       |
| Tundra Switching Station (Formerly CEPP Switching Station Bid X645)<br>Construct new 345 kV switching station to integrate generation.                                                                                                                                                                                                                                                                                                                                                                                         | In-Svc Date: | 2022                       |
| Distribution Planning Substations<br>New distribution substations – Barker, Berkley, Blue Spruce, Dove Valley,<br>Gray Street, Poder (formerly Stock Show), Lowry, New Castle, North<br>Sheridan, Sandy Creek, Solterra, Superior, Wellington, and Wilson. These<br>substations are driven by load growth in their respective areas. The<br>transmission portion of these projects include an in-and-out line tap,<br>which interconnects the new distribution substation(s) and the associated<br>equipment. For reliability. | In-Svc Date: | Poder 2026;<br>Barker 2027 |

## **Generation Resource Changes**

Overview of recently added generation, current plans for new generation, and planned generation retirements within the PSCo system are included in the table below.

| Name                                         | Net MW  | Туре          | PSCo Deliver Point Bus | ISD  |
|----------------------------------------------|---------|---------------|------------------------|------|
| Thunderwolf (Formerly<br>CEP 5 Bid No. x647) | 200/100 | Solar/Battery | Mirasol 230 kV         | 2023 |
| Neptune (Formerly CEP<br>6 Bid No. x645)     | 250/125 | Solar/Battery | Tundra 345 kV          | 2023 |
| Arriba (Bronco Plains II)                    | 200     | Wind          | Shortgrass 345 kV      | 2023 |
| Comanche 2<br>(Retirement)                   | -325    | Coal          | Comanche 230 kV        | 2025 |

| Name                       | Net MW | Туре | PSCo Deliver Point Bus | ISD  |
|----------------------------|--------|------|------------------------|------|
| Cherokee 4<br>(Retirement) | -300   | Gas  | Cherokee               | 2027 |
| Comanche 3<br>(Retirement) | -780   | Coal | Comanche 345 kV        | 2031 |

# Dictionary of Bus Names – 2024

| NAME        | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                                        |
|-------------|------|------------|----------------------|----------------------------------------------------|
| ADOBE       | 230  | 70268      |                      | ADOBE 230 (PSCo GVREA Substation)                  |
| AIR_LIQ     | 115  | 70027      |                      | AIR LIQUIDE 115                                    |
| AIR_LIQ_TP  | 115  | 70531      |                      | AIR LIQUIDE TAP 115                                |
| ALLISON     | 115  | 70023      |                      | ALLISON 115                                        |
| ALMA        | 230  | 70032      |                      | ALMA 230                                           |
| ALAMOSA     | 69   | 70024      |                      | ALAMOSA STEAM 69 (PSCo)                            |
| ALMSA_TM    | 69   | 70026      |                      | ALAMOSA TERMINAL 69                                |
| ALMSA_TM    | 115  | 70025      |                      | ALAMOSA TERMINAL 115                               |
| ALMSACT1    | 13.8 | 70485      | 464                  | ALAMOSA COMBUSTION TURBINE UNIT #1<br>13.8 (PSCo)  |
| ALMSACT2    | 13.8 | 70486      | 464                  | ALAMOSA COMBUSTION TURBINE UNIT #2<br>13.8 (PSCo)  |
| AMATLAS     | 230  | 79250      |                      | AMERICAN ATLAS 230                                 |
| AMES        | 115  | 79257      | 6207                 | AMES HYDRO 115                                     |
| ANADARKO    | 115  | 70238      |                      | ANADARKO 115                                       |
| ANADARKO_T  | 115  | 70219      |                      | ANADARKO 115 TAP                                   |
| ANTONITO    | 69   | 70029      |                      | ANTONITO 69.0                                      |
| ARAPAHOE_A  | 115  | 70036      |                      | ARAPAHOE A 115                                     |
| ARAPAHOE_B  | 115  | 70037      |                      | ARAPAHOE B 115                                     |
| ARAP_Gen    | 115  | 70035      |                      | ARAPAHOE 115                                       |
| ARAP5&6     | 13.8 | 70553      | 55200                | ARAPAHOE UNITS #5 & #6 13.8 (Southeast Generation) |
| ARAP7       | 13.8 | 70554      | 55200                | ARAPAHOE UNIT #7 13.8 (Southeast Generation)       |
| ARAPAHOE    | 230  | 70038      |                      | ARAPAHOE 230                                       |
| ARGO        | 115  | 70039      |                      | ARGO 115                                           |
| ARRIBA_W1   | 0.69 | 70443      | 66014                | ARRIBA WIND COLLECTOR 1                            |
| ARRIBA_W1_1 | 34.5 | 70633      |                      | ARRIBA COLLECTOR #1 34.5 BUS #1                    |
| ARRIBA_W1_2 | 34.5 | 70445      |                      | ARRIBA COLLECTOR #1 34.5 BUS #2                    |
| ARRIBA_W2   | 0.69 | 70442      | 66014                | ARRIBA WIND COLLECTOR 2                            |
| ARRIBA_W2_1 | 34.5 | 70634      |                      | ARRIBA COLLECTOR #2 34.5 BUS #1                    |
| ARRIBA_W2_2 | 34.5 | 70446      |                      | ARRIBA COLLECTOR 2 34.5 BUS #2                     |
| ARRIBA_WF   | 345  | 70659      |                      | ARRIBA 345                                         |
| ARROWHLK    | 115  | 70475      |                      | ARROWHEAD LAKE 115                                 |
| ARSENAL     | 115  | 70040      |                      | ARSENAL 115                                        |
| ARVADA_PS   | 230  | 70041      |                      | ARVADA 230                                         |
| ASPEN_PS    | 115  | 70541      |                      | ASPEN 115 (HCEA)                                   |
| AVERY_PS    | 230  | 70862      |                      | AVERY 230                                          |
| AVON        | 115  | 79092      |                      | AVON 115 (HCEA)                                    |
| BEAVER_CK_P | 230  | 70399      |                      | BEAVER CREEK PSCo (EAST) 230                       |
| BANCROFT    | 115  | 70045      |                      | BANCROFT 115                                       |
| BARR_LAKE   | 230  | 70047      |                      | BARR LAKE 230                                      |
| BASALT      | 13.8 | 71985      |                      | BASALT 13.8 SVD                                    |
| BASALT      | 115  | 79003      |                      | BASALT 115                                         |
| BASALT      | 230  | 79004      |                      | BASALT 230                                         |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                          |
|--------------|------|------------|----------------------|--------------------------------------|
| BASALT_DST   | 115  | 70540      |                      | BASALT DISTRIBUTION 115              |
| BEAVER_CK_N  | 115  | 70398      |                      | BEAVER CREEK SOUTH 115               |
| BEAVER_CK_S  | 115  | 70397      |                      | BEAVER CREEK NORTH 115               |
| BEAVER_CK_W  | 115  | 79006      |                      | BEAVER CREEK 115                     |
| MIDDLE_FORK  | 230  | 70357      |                      | BENCH 230                            |
| BERGEN_PK    | 115  | 70050      |                      | BERGEN PARK 115                      |
| BERTHOUD     | 115  | 70534      |                      | BERTHOUD 115                         |
| BIGHORN_S    | 0.63 | 70878      | 63770                | BIGHORN SOLAR PV                     |
| BIGHORN_S_1  | 34.5 | 70877      |                      | BIGHORN SOLAR 34.5                   |
| BIGHORN_S_2  | 34.5 | 70876      |                      | BIGHORN SOLAR 34.5                   |
| BIGHORN_S_3  | 230  | 70875      |                      | BIGHORN SOLAR 230                    |
| BLANCA_PEAK  | 115  | 70937      |                      | BLANCA PEAK 115                      |
| BLUE_RIVER   | 115  | 70052      |                      | BLUE RIVER 115                       |
| BLUE_RIVER   | 230  | 70053      |                      | BLUE RIVER 230                       |
| BLUESTONE    | 230  | 70264      |                      | BLUESTONE 230                        |
| BLUESTONE    | 69   | 70981      |                      | BLUESTONE 69                         |
| BLUSPRU_GENS | 230  | 70520      |                      | BLUE SPRUCE 230                      |
| BUENA_VST_T  | 115  | 70056      |                      | BUENA VISTA TAP 115                  |
| BOULDER_TM1  | 115  | 70059      |                      | BOULDER TERMINAL 115                 |
| BOONE        | 13.8 | 71981      |                      | BOONE 13.8 SVD                       |
| BOONE        | 230  | 70061      |                      | BOONE 230                            |
| BOULDER_CN2  | 115  | 70058      |                      | BOULDER HYDRO 115                    |
| BOULDER_HYD  | 115  | 70492      |                      | BOULDER HYDRO 115                    |
| BOULDER_TRM2 | 115  | 70033      |                      | BOULDER TERMINAL 2 115               |
| BOULDER_TRM3 | 115  | 70034      |                      | BOULDER TERMINAL 3 115               |
| BRECKRDG     | 230  | 70064      |                      | BRECKENRIDGE 230                     |
| BRICK_CT_CR  | 115  | 70546      |                      | BRICK CENTER 115 (PSCo/CORE)         |
| BRICKCTR     | 230  | 70545      |                      | BRICK CENTER 230 (PSCo/CORE)         |
| BRONCO_W1    | 0.69 | 70753      | 63803                | BRONCO PLAINS WIND COLLECTOR 1       |
| BRONCO_W2_1  | 34.5 | 70752      |                      | BRONCO PLAINS                        |
| BRONCO_W1_1  | 34.5 | 70751      |                      | BRONCO PLAINS                        |
| BRONCO_W2    | 0.69 | 70749      | 63803                | BRONCO PLAINS WIND COLLECTOR 2       |
| BRONCO_PLNS  | 345  | 70750      |                      | BRONCO PLAINS                        |
| BROOMFIELD   | 115  | 70065      |                      | BROOMFIELD 115 BUS #1                |
| BRUSH_SW_E   | 115  | 70006      |                      | BRUSH COLO POWER PARTNERS 115        |
| BRUSH_SW_W   | 115  | 70005      |                      | BRUSH COLO POWER PARTNERS 115        |
| BUCKLEY1     | 230  | 70067      |                      | BUCKLEY 230 BUS #1                   |
| BUCKLEY2     | 230  | 70046      |                      | BUCKLEY 230 BUS #2                   |
| BURL PSC     | 115  | 73034      | 6619                 | BURLINGTON PSCo 115                  |
| CABCRKA      | 13.8 | 70069      | 467                  | CABIN CREEK HYDRO UNIT A 13.8 (PSCo) |
| CABCRKB      | 13.8 | 70070      | 467                  | CABIN CREEK HYDRO UNIT B 13.8 (PSCo) |
| CABIN_CK     | 115  | 70071      |                      | CABIN CREEK 115                      |
| CABIN_CK     | 230  | 70072      |                      | CABIN CREEK 230                      |
| CAERUS_S1    | 230  | 70430      | N/A                  | CAERUS SOLAR 230                     |
| CALIFORNIA   | 115  | 70073      |                      | CALIFORNIA 115                       |
| CALIFORN_TP  | 115  | 70074      |                      | CALIFORNIA TAP 115                   |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                        |
|--------------|------|------------|----------------------|------------------------------------|
| CAMEO        | 13.8 | 71989      |                      | CAMEO 13.8 SVD                     |
| CAMEO        | 69   | 70076      |                      | CAMEO 69                           |
| CAMEO        | 230  | 70078      |                      | CAMEO 230                          |
| CAPITOL_HL   | 115  | 70087      |                      | CAPITOL HILL 115                   |
| CARBONDALE   | 115  | 70089      |                      | CARBONDALE 115                     |
| CASTLRCK_TP1 | 115  | 70020      |                      | CASTLE ROCK TAP 1 115              |
| CASTLRCK_TP2 | 115  | 70021      |                      | CASTLE ROCK TAP 2 115              |
| CASTL_RK_CR  | 115  | 70091      |                      | CASTLE ROCK 115 (PSCo/CORE)        |
| CEDAR2_STAT1 | 0.48 | 70828      |                      | CEDAR CREEK DSTAT #1               |
| CEDAR2_STAT2 | 0.48 | 70829      |                      | CEDAR CREEK DSTAT #2               |
| CEDAR2_W1    | 0.66 | 70825      | 57210                | CEDAR CREEK 34.5 BUS #2A (Unit W1) |
| CEDAR2_W2    | 0.69 | 70826      | 57210                | CEDAR CREEK 34.5 BUS #2B (Unit W2) |
| CEDAR2_W3    | 0.66 | 70827      | 57210                | CEDAR CREEK 2 GEN (W3)             |
| CEDAR2W1     | 34.5 | 70830      |                      | CEDAR CREEK 2 34.5 (W1)            |
| CEDAR2W2     | 34.5 | 70831      |                      | CEDAR CREEK 2 34.5 (W2)            |
| CEDAR2W3     | 34.5 | 70832      |                      | CEDAR CREEK 2 34.5 (W3)            |
| CEDARCK_SYD  | 230  | 70821      |                      | CEDAR CREEK 230                    |
| CEDARCK_1A   | 34.5 | 70823      | 56371                | CEDAR CREEK 34.5 BUS #1A (Unit W1) |
| CEDARCK_1B   | 34.5 | 70824      | 56371                | CEDAR CREEK 34.5 BUS #1B (Unit W2) |
| CEDARCK_CAP  | 230  | 70822      |                      | CEDAR CREEK CAPACITOR BANK         |
| CEDARCK2     | 230  | 70833      |                      | CEDAR CREEK 230                    |
| CEDARCK2A    | 34.5 | 70834      |                      | CEDAR CREEK 2 A BUS 34.5           |
| CEDARCK2B    | 34.5 | 70835      |                      | CEDAR CREEK 2 B BUS 34.5           |
| CEDAR_PT     | 230  | 70678      |                      | CEDAR POINT 230                    |
| CEDARPT_GEN  | 230  | 70679      |                      | CEDAR POINT GENERATORS BUS         |
| CEDARPT_W1   | 0.69 | 70670      | 57315                | CEDAR POINT 1 GEN (W1)             |
| CEDRPT_W1_1  | 34.5 | 70672      |                      | CEDAR POINT 1 34.5                 |
| CEDRPT_W1_2  | 34.5 | 70674      |                      | CEDAR POINT 1 34.5 (Reactor)       |
| CEDRPT_W1_3  | 230  | 70676      |                      | CEDAR POINT 1 230                  |
| CEDARPT_W2   | 0.69 | 70671      | 57315                | CEDAR POINT 2 GEN (W2)             |
| CEDRPT_W2_1  | 34.5 | 70673      |                      | CEDAR POINT 2 34.5                 |
| CEDRPT_W2_2  | 34.5 | 70675      |                      | CEDAR POINT 2 34.5 (SVD)           |
| CEDRPT_W2_3  | 230  | 70677      |                      | CEDAR POINT 2 230                  |
| CF&IFURN     | 230  | 70094      |                      | CF&I FUNANCE 230                   |
| CF&ISE1      | 69   | 70095      |                      | CF&I SOUTHEAST 69 BUS #1           |
| CF&ISE1      | 115  | 70096      |                      | CF&I SOTHEAST 115 BUS #1           |
| CF&ISE2      | 69   | 70097      |                      | CF&I SOUTHEAST 69 BUS #2           |
| CF&ISE2      | 115  | 70098      |                      | CF&I SOUTHEAST 115 BUS#2           |
| CHATFLD      | 230  | 70100      |                      | CHATFIELD 230                      |
| CHEROK2      | 15.5 | 70104      | 469                  | CHEROKEE UNIT #2 15.5 (PSCo)       |
| CHEROK4      | 22   | 70106      | 469                  | CHEROKEE UNIT #4 22 (PSCo)         |
| CHEROKEE     | 230  | 70107      |                      | CHEROKEE 230                       |
| CHEROKEE_N   | 115  | 70110      |                      | CHEROKEE 115 NORTH BUS             |
| CHEROKEE_S   | 115  | 70108      |                      | CHEROKEE 115 SOUTH BUS             |
| CHEROKEE5    | 18   | 70145      | 469                  | CHEROKEE UNIT #5 18                |
| CHEROKEE6    | 18   | 70146      | 469                  | CHEROKEE UNIT #6 18                |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                                 |
|--------------|------|------------|----------------------|---------------------------------------------|
| CHEROKEE7    | 18   | 70147      | 469                  | CHEROKEE UNIT #7 18                         |
| CHEYRDG_E    | 345  | 70730      |                      | CHEYENNE RIDGE, EAST                        |
| CHEYRDG_W    | 345  | 70632      |                      | CHEYENNE RIDGE WEST                         |
| CHEYRGE_W1   | 0.69 | 70733      | 62952                | CHEYENNE RIDGE EAST WIND COLLECTOR<br>1     |
| CHEYRGE_W1_1 | 34.5 | 70732      |                      | CHEYENNE RIDGE EAST                         |
| CHEYRGE_W13  | 34.5 | 70731      |                      | CHEYENNE RIDGE EAST                         |
| CHEYRGE_W2   | 0.69 | 70736      | 62952                | CHEYENNE RIDGE EAST WIND COLLECTOR 2        |
| CHEYRGE_W2_1 | 34.5 | 70735      |                      | CHEYENNE RIDGE EAST                         |
| CHEYRGE_W2_2 | 34.5 | 70734      |                      | CHEYENNE RIDGE EAST                         |
| CHEYRGW_W1   | 0.69 | 70739      | 62952                | CHEYENNE RIDGE WEST WIND COLLECTOR<br>1     |
| CHEYRGW_W1_1 | 34.5 | 70738      |                      | CHEYENNE RIDGE WEST                         |
| CHEYRGW_W1_2 | 34.5 | 70737      |                      | CHEYENNE RIDGE WEST                         |
| CHEYRGW_W2   | 0.69 | 70742      | 62952                | CHEYENNE RIDGE WEST WIND COLLECTOR 2        |
| CHEYRGW_W2_1 | 34.5 | 70741      |                      | CHEYENNE RIDGE WEST                         |
| CHEYRGW_W2_2 | 34.5 | 70740      |                      | CHEYENNE RIDGE WEST                         |
| CHEYRGE_W3   | 0.69 | 70775      | 62952                | CHEYENNE RIDGE WEST WIND COLLECTOR 3        |
| CHEYRGE_W3_1 | 34.5 | 70776      |                      | CHEYENNE RIDGE WEST                         |
| CHEYRGW_CTRL | 345  | 70778      |                      | CHEYENNE RIDGE WEST                         |
| CHAMBERS     | 115  | 70538      |                      | CHAMBERS 115                                |
| CHAMBERS     | 230  | 70539      |                      | CHAMBERS 230                                |
| CLARK        | 230  | 70112      |                      | CLARK 230                                   |
| CLIFTON      | 230  | 70113      |                      | CLIFTON 230                                 |
| CLIMAX       | 115  | 70114      |                      | CLIMAX 115                                  |
| CLOVERLY     | 115  | 70903      |                      | CLOVERLY 115                                |
| CO_GRN       | 230  | 70700      |                      | COLORADO GREEN WIND FARM 230                |
| CO_GRN_E     | 34.5 | 70701      |                      | COLORADO GREEN EAST 34.5 kV BUS #2          |
| CO_GRN_W     | 34.5 | 70702      |                      | COLORADO GREEN WEST 34.5 kV BUS #2          |
| CO_GRN_E     | 0.58 | 70708      | 56173                | COLORADO GREEN EAST WIND FARM 34.5          |
| CO_GRN_E_1   | 34.5 | 70707      |                      | COLORADO GREEN EAST 34.5 kV BUS #1          |
| CO_GRN_W     | 0.58 | 70256      | 56173                | COLORADO GREEN WEST WIND FARM 34.5          |
| CO_GRN_W_1   | 34.5 | 70709      |                      | COLORADO GREEN EAST 34.5 kV BUS #1          |
| COBBLAKE     | 115  | 73600      |                      | COBBLAKE 115                                |
| COBBLKTP     | 115  | 73044      |                      | COBBLAKE TAP 115                            |
| COCENTER     | 69   | 70118      |                      | CO CENTER 69 (Town of Center Tap)           |
| ALAMOSA_PV   | 34.5 | 70933      | 57368                | COGENTRIX SOLAR UNIT #1 34.5<br>(COGENTRIX) |
| COLLINS_ST   | 115  | 70902      |                      | COLLINS STREET 115                          |
| COMAN_2      | 24   | 70120      | 470                  | COMANCHE UNIT #2 24 (PSCo)                  |
| COMAN_3      | 27   | 70777      | 470                  | COMANCHE UNIT #3 24 (PSCo)                  |
| COMAN_S1     | 0.42 | 70934      | 59656                | COMANCHE PV                                 |
| COMAN_S1_1   | 34.5 | 70940      |                      | COMANCHE SOLAR 34.5                         |
| COMAN_S1_2   | 34.5 | 70941      |                      | COMANCHE SOLAR 34.5                         |
| COMAN230_S1  | 230  | 70942      |                      | COMANCHE SOLAR 230                          |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                     |
|--------------|------|------------|----------------------|---------------------------------|
| COMANCHE_1   | 115  | 70121      |                      | COMANCHE 115 BUS #1             |
| COMANCHE_2   | 115  | 70123      |                      | COMANCHE 115 BUS #2             |
| COMANCHE     | 230  | 70122      |                      | COMANCHE 230                    |
| COMANCHE     | 345  | 70654      |                      | COMANCHE 345                    |
| CONIFER_CR   | 115  | 70124      |                      | CONIFER 115                     |
| CONOCO       | 115  | 70126      |                      | CONOCO 115                      |
| COOLEYMA     | 230  | 70535      |                      | COOLEY MESA 230 (HCEA)          |
| COORS_RCL    | 115  | 70127      |                      | COORS RECYCLING 115             |
| COPOWPRO_NUG | 115  | 70482      |                      | COLORADO POWER PROJECT 115      |
| CRAIG_YV     | 230  | 70009      |                      | CRAIG TRANSFER 230              |
| CRYSTLPS     | 115  | 79018      |                      | CRYSTAL PSCo 115                |
| DAKOTA       | 230  | 70141      |                      | DAKOTA 230                      |
| DANIEL_PK    | 13.8 | 71984      |                      | DANIELS PARK 13.8 SVD           |
| DANIEL_PK    | 115  | 70138      |                      | DANIELS PARK 115                |
| DANIEL_PK    | 230  | 70139      |                      | DANIELS PARK 230                |
| DANIEL_PK    | 345  | 70601      |                      | DANIELS PARK 345                |
| DAVIS_PS_TP  | 115  | 70190      |                      | DAVIS 115                       |
| DEBEQUE      | 69   | 70140      |                      | DEBEQUE 69                      |
| DEER_CK      | 115  | 70142      |                      | DEER CREEK 115                  |
| DEL_NORTE    | 69   | 70143      |                      | DEL NORTE 69                    |
| DENVER_TM_1  | 115  | 70148      |                      | DENVER TERMINAL 115 BUS #1      |
| DENVER_TRM_2 | 115  | 70144      |                      | DENVER TERMINAL 115 BUS #2      |
| DENVER_TM    | 230  | 70149      |                      | DENVER TERMINAL 230             |
| DERBY_2      | 115  | 70153      |                      | DERBY 115 BUS #1                |
| DERBY_1      | 115  | 70154      |                      | DERBY 115 BUS #2                |
| DILLON       | 115  | 70155      |                      | DILLON 115                      |
| DILLON       | 230  | 70156      |                      | DILLON 230                      |
| DIVIDE       | 115  | 70157      |                      | DIVIDE 115                      |
| EAST_1       | 115  | 70162      |                      | EAST 115 BUS #1                 |
| EAST_2       | 115  | 70171      |                      | EAST 115 BUS #2                 |
| ELATI1       | 230  | 70163      |                      | ELATI 230 BUS #1                |
| ELDORADO     | 115  | 70164      |                      | ELDORADO 115                    |
| ENGLE_WD_TP  | 115  | 70165      |                      | ENGLEWOOD BUS #3 LINE TAP 115.0 |
| ENGLEWD1     | 115  | 70166      |                      | ENGLEWOOD 115 BUS #1            |
| ENGLEWD2     | 115  | 70167      |                      | ENGLEWOOD 115 BUS #2            |
| ENGLEWD3     | 115  | 70168      |                      | ENGLEWOOD 115 BUS #3            |
| ENNIS        | 115  | 70169      |                      | ENNIS 115                       |
| FAIRGRNDS    | 115  | 70081      |                      | FAIRGROUNDS 115                 |
| FED_CTR      | 115  | 70172      |                      | FEDERAL CENTER 115              |
| FED_CTR_TP   | 115  | 70173      |                      | FEDERAL CENTER TAP 115          |
| FEDERHT1     | 115  | 70175      |                      | FEDERAL HEIGHTS 115 BUS #1      |
| FEDERHT23    | 115  | 70174      |                      | FEDERAL HEIGHTS 115 BUS #2      |
| FITZ_SIMONS  | 115  | 70537      |                      | FITZSIMMONS 115                 |
| FOIDELCK     | 230  | 79091      |                      | FOIDEL CREEK 230                |
| FRUITA       | 13.8 | 70180      | 471                  | FRUITA UNIT #1 13.8 (PSCo)      |
| FRUITA       | 69   | 70183      |                      | FRUITA 69                       |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                                                       |
|--------------|------|------------|----------------------|-------------------------------------------------------------------|
| FTGARLND     | 69   | 70187      |                      | FT GARLAND 69                                                     |
| FT_LUPTN_12  | 13.8 | 70188      | 8067                 | FT LUPTON UNITS #1 & #2 13.8 (PSCo)                               |
| FT_LUPTON_1  | 115  | 70191      |                      | FT LUPTON 115 BUS #1                                              |
| FORT_LUPTON2 | 115  | 70090      |                      | FT LUPTON 115 BUS #2                                              |
| FT_LUPTON    | 230  | 70192      |                      | FT LUPTON 230                                                     |
| FTNVAL_GENS  | 230  | 70595      |                      | FOUNTAIN VALLEY 230                                               |
| FTNVL1&2     | 13.8 | 70577      | 55453                | FOUNTAIN VALLEY UNITS #1 & #2 13.8<br>(Fountain Valley Power LLC) |
| FTNVL3&4     | 13.8 | 70578      | 55453                | FOUNTAIN VALLEY UNITS #3 & #4 13.8<br>(Fountain Valley Power LLC) |
| FTNVL5&6     | 13.8 | 70579      | 55453                | FOUNTAIN VALLEY UNITS #5 & #6 13.8<br>(Fountain Valley Power LLC) |
| FULTONTS     | 115  | 70194      |                      | FULTON TRI-STATE 115                                              |
| GEORG1&2     | 2.3  | 70195      | 472                  | GEORGETOWN HYDRO UNITS #1  2.3<br>(PSCo)                         |
| GEORGETN     | 25   | 70196      |                      | GEORGETOWN 25                                                     |
| GEORGETN     | 115  | 70197      |                      | GEORGETN 115                                                      |
| GILCREST     | 115  | 70198      |                      | GILCREST 115                                                      |
| GILMAN       | 115  | 70199      |                      | GILMAN 115                                                        |
| GLDNWST_W1   | 0.69 | 70663      | 59974                | GOLDEN WEST WIND COLLECTOR #1 0.69                                |
| GLDNWST_W_2  | 34.5 | 70661      |                      | GOLDEN WEST WIND SUB BUS 1 34.5                                   |
| GLDNWST_W_1  | 34.5 | 70662      |                      | GOLDEN WEST WIND SUB BUS 2 34.5                                   |
| GLENNPS      | 230  | 70200      |                      | GLENN PUBLIC SERVICE 230                                          |
| GLENWOOD     | 69   | 70201      |                      | GLENWOOD SPRINGS 69 (CITY OF<br>GLENWOOD SPRINGS)                 |
| GODFREY      | 115  | 70202      |                      | GODFREY TAP 115                                                   |
| GOLDEN_WEST  | 230  | 70660      |                      | GOLDEN WEST WIND SUB BUS 230                                      |
| UTE_GRND_JN  | 345  | 79036      |                      | GRAND JUNCTION 345                                                |
| UTE_GRND_JN  | 69   | 70214      |                      | GRAND JUNCTION (Ute) 69                                           |
| UTE_GRND_JN  | 115  | 79034      |                      | GRAND JUNCTION (Ute) 115                                          |
| UTE_GRND_JN  | 138  | 79035      |                      | GRANDJUNCTION (Ute) 138                                           |
| GRAND_JT     | 230  | 70205      |                      | GRAND JUNCTION (Ute) 230                                          |
| GRANDJ_PS    | 230  | 70206      |                      | GRAND JUNCTION PSCo 230                                           |
| GRAY_STREET  | 115  | 70208      |                      | GRAY ST 115                                                       |
| GREELEY      | 115  | 70209      |                      | GREELEY 115                                                       |
| GREEN_VLY    | 230  | 70048      |                      | GREEN VALLEY 230                                                  |
| GREENWOOD_1  | 230  | 70212      |                      | GREENWOOD 230 BUS #1                                              |
| GREENWOOD_2  | 230  | 70189      |                      | GREENWOOD 230 BUS #2                                              |
| GSANDHIL_PV  | 34.5 | 70931      | 57377                | GREATER SANDHILL SOLAR UNIT#1 34.5                                |
| GUNBARRE1    | 230  | 70213      |                      | GUNBARREL 1 230                                                   |
| GUNBARREL_2  | 230  | 70211      |                      | GUNBARREL 2 230                                                   |
| HAGERMAN_TAP | 230  | 70111      |                      | HAGERMAN TAP 230                                                  |
| HARRISON_P1  | 115  | 70215      |                      | HARRISON 115 BUS #1                                               |
| HARRISON_PS2 | 115  | 70182      |                      | HARRISON 115 BUS #2                                               |
| HARTSELT     | 230  | 70927      |                      | HARTSEL 230                                                       |
| HARVEST_MI   | 230  | 70596      |                      | HARVEST MILE SUB 230                                              |
| HARVEST_MI   | 345  | 70597      |                      | HARVEST MILE SUB 345                                              |
| HAVANA1      | 115  | 70216      |                      | HAVANA 115 BUS #1                                                 |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                  |
|--------------|------|------------|----------------------|------------------------------|
| HAVANA2      | 115  | 70217      |                      | HAVANA 115 BUS #2            |
| HAYDEN1      | 18   | 79040      | 525                  | HAYDEN UNIT#1 18 (A73)       |
| HAYDEN2      | 22   | 79041      | 525                  | HAYDEN UNIT#2 22 (A73)       |
| HENDRSN      | 115  | 70218      |                      | HENDERSON PSCo 115           |
| HIGH_PT      | 230  | 70497      |                      | HIGH POINT TAP 115           |
| HOGBACK      | 115  | 70224      |                      | HOGBACK 115                  |
| HOMELAKE     | 69   | 70228      |                      | HOMELAKE 69                  |
| HOMESTEAD    | 230  | 70513      |                      | HOMESTEAD 230                |
| SLVS_IBRDRLA | 34.5 | 70932      | 57317                | GE SOLAR UNIT#1 34.5         |
| HOPKINS      | 69   | 70267      |                      | HOPKINS 69                   |
| HOPKINS      | 115  | 70231      |                      | HOPKINS 115                  |
| HOPKINS      | 230  | 70232      |                      | HOPKINS 230                  |
| HORIZON      | 230  | 70233      |                      | HORIZON 230                  |
| HAPPY_CNYN   | 115  | 70115      |                      | HAPPY CANYON 115 (PSCO IREA) |
| HUSKY        | 115  | 70901      |                      | HUSKY 115                    |
| HUSKY        | 230  | 70898      |                      | HUSKY 230                    |
| IDAHO_SPGS   | 230  | 70237      |                      | IDAHO SPRINGS 230            |
| IMBODEN      | 230  | 70526      |                      | IMBODEN 230                  |
| ISABELLE     | 230  | 70544      |                      | ISABELLE 230                 |
| JBS_BEEF     | 44   | 70645      |                      | JBS BEEF 44                  |
| JEWELL1      | 230  | 70512      |                      | JEWELL 230 BUS #1            |
| JEWELL2      | 230  | 70239      |                      | JEWELL 230 BUS #2            |
| JOHNSTOWN_1  | 115  | 70240      |                      | JOHNSTOWN 115 BUS#1          |
| JOHNSTOWN_2  | 115  | 70246      |                      | JOHNSTOWN 115 BUS#2          |
| JORDAN       | 230  | 70241      |                      | JORDAN 230                   |
| KEENESBURG   | 230  | 70820      |                      | KEENESBURG 230               |
| KELIM        | 115  | 70008      |                      | KELIM 115                    |
| KENDRICK     | 115  | 70242      |                      | KENDRICK 115                 |
| KERBERCK     | 69   | 70509      |                      | KERBER CREEK 69              |
| LACOMBE      | 230  | 70324      |                      | LACOMBE 230                  |
| LAFAYETTE    | 115  | 70244      |                      | LAFAYETTE 115                |
| LAKEWOOD_1   | 115  | 70251      |                      | LAKEWOOD 115 BUS #1          |
| LAKEWOOD_2   | 115  | 70252      |                      | LAKEWOOD 115 BUS #2          |
| LAMAR_SWYD   | 230  | 70254      |                      | LAMAR CO 230                 |
| LAMAR_DC     | 230  | 70560      | Not Available        | LAMAR DC TIE 230             |
| LEADVIL1     | 115  | 70257      |                      | LEADVILLE 115 BUS #1         |
| LEADVIL2     | 115  | 70258      |                      | LEADVILLE 115 BUS #2         |
| LEETSDALE    | 230  | 70260      |                      | LEETSDALE 230 BUS#1          |
| LEETSDALE_1  | 115  | 70259      |                      | LEETSDALE 115 BUS#1          |
| LEETSDALE_2  | 115  | 70282      |                      | LEETSDALE 115 BUS#2          |
| LEGGETT      | 230  | 70261      |                      | LEGGETT 230                  |
| LEMON_GLCH   | 230  | 70533      |                      | LEMON GULCH (IREA) 230       |
| LEPRINO_PS   | 115  | 70805      |                      | LEPRINO 115                  |
| LEPRINO_TAP  | 115  | 70116      |                      | LEPRINO TAP 115              |
| LEYDEN_TP    | 115  | 70262      |                      | LEYDEN 115                   |
| LIMON1       | 345  | 70625      |                      | LIMON I WIND BUS 345         |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                                      |
|--------------|------|------------|----------------------|--------------------------------------------------|
| LIMON1_W     | 34.5 | 70635      | 58126                | LIMON I WIND UNIT#1 34.5                         |
| LIMON2       | 345  | 70626      |                      | LIMON II WIND BUS 345                            |
| LIMON2_W     | 34.5 | 70636      | 58127                | LIMON II WIND UNIT#1 34.5                        |
| LIMON3       | 345  | 70627      |                      | LIMON 345                                        |
| LIMON3_W     | 34.5 | 70637      | 59083                | LIMON III WIND UNIT#1 34.5                       |
| LITTLET1     | 115  | 70263      |                      | LITTLETON 115 BUS #1                             |
| LAKE_GEORGE  | 115  | 70419      |                      | LAKE GEORGE 115                                  |
| LOOKOUT_1    | 115  | 70265      |                      | LOOKOUT 115 BUS #1                               |
| LOOKOUT_2    | 115  | 70066      |                      | LOOKOUT 115 BUS #2                               |
| LOOKOUT      | 230  | 70266      |                      | LOOKOUT 230                                      |
| LOUISVILLE   | 115  | 70269      |                      | LOUISVILLE 115                                   |
| LUCERNE_PS   | 115  | 70899      |                      | LUCERNE 115                                      |
| MALTA        | 115  | 70273      |                      | MALTA 115                                        |
| MALTA        | 230  | 70274      |                      | MALTA 230                                        |
| MALTA_T1     | 13.8 | 71982      |                      | MALTA 13.8 SVD #1                                |
| MALTA_T2     | 13.8 | 71983      |                      | MALTA 13.8 SVD #2                                |
| MANCHEF1     | 16   | 70314      | 55127                | MANCHIEF UNIT #1 15.2 (Manchief Power Co<br>LLC) |
| MANCHEF2     | 16   | 70315      | 55127                | MANCHIEF UNIT #2 15.2 (Manchief Power Co<br>LLC) |
| MANCHIEF_NUG | 230  | 70349      |                      | MANCHIEF 230                                     |
| MAPLETO1     | 115  | 70276      |                      | MAPLETON 115 BUS #1                              |
| MAPLETO2     | 115  | 70277      |                      | MAPLETON 115 BUS #2                              |
| MARCY        | 230  | 70278      |                      | MARCY 230                                        |
| MARTIN_1     | 115  | 70279      |                      | MARTIN 115 BUS #1                                |
| MARTIN_2     | 115  | 70280      |                      | MARTIN 115 BUS #2                                |
| MARTIN_TP    | 115  | 70484      |                      | MARTIN TAP 115                                   |
| MAYFLOWER    | 115  | 70281      |                      | MAYFLOWER 115                                    |
| MEADOW_HLS   | 230  | 70283      |                      | MEADOW HILLS 230                                 |
| MEARSJCT     | 69   | 70507      |                      | MEARS JUNCTION 69                                |
| MIDWAY_PS    | 13.8 | 71996      |                      | MISSILE SITE 13.8 (SVD)                          |
| MIDWAY_PS    | 115  | 70285      |                      | MIDWAY PSCo 115                                  |
| MIDWAY_PS    | 230  | 70286      |                      | MIDWAY PSCo 230                                  |
| MIDWAY_PS    | 345  | 70465      |                      | MIDWAY PSCo 345                                  |
| MILL         | 115  | 70287      |                      | MILL 115                                         |
| MIRASOL      | 230  | 70652      |                      | MIRASOL 230                                      |
| MIRGEJCT     | 69   | 70505      |                      | MIRAGE JUNCTION TAP 69                           |
| MISS_SITE    | 230  | 70623      |                      | MISSILE SITE 230                                 |
| MISS_SITE    | 345  | 70624      |                      | MISSILE SITE 345                                 |
| MITCHELL_CK  | 69   | 70288      |                      | MITCHEL CREEK 69                                 |
| MOFFAT       | 69   | 70289      |                      | MOFFAT 69                                        |
| MONACO_12    | 230  | 70481      |                      | MONACO 230                                       |
| MONFORT      | 115  | 70290      |                      | MONFORT 115                                      |
| MONROEPS     | 230  | 70291      |                      | MONROE PSCo 230                                  |
| MOONGLCH     | 230  | 70574      |                      | MOONGULCH 230                                    |
| MOSCA        | 69   | 70292      |                      | MOSCA 69                                         |
| MISS_SITE    | 13.8 | 71997      |                      | MISSILE SITE 13.8 (SVD)                          |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                                     |
|--------------|------|------------|----------------------|-------------------------------------------------|
| MT_HARRIS    | 138  | 70525      |                      | MOUNT HARRIS 138                                |
| MTNBREEZE    | 230  | 70819      |                      | MOUNTAIN BREEZE                                 |
| MTNBRZ_W1    | 0.69 | 70818      | 62840                | MOUNTAIN BREEZE WIND COLLECTOR 1                |
| MTNBRZ_W2    | 0.69 | 70817      | 62840                | MOUNTAIN BREEZE WIND COLLECTOR 2                |
| MTNBRZ_WTG_1 | 34.5 | 70816      |                      | MOUNTAIN BREEZE 34.5 COLLECTOR 1                |
| MTNBRZ_WTG_2 | 34.5 | 70815      |                      | MOUNTAIN BREEZE 34.5 COLLECTOR 2                |
| MURPHY       | 230  | 70551      |                      | MURPHY CREEK 230                                |
| NCAR         | 115  | 70295      |                      | NATIONAL CENTER FOR ATMOSPHERIC<br>RESEARCH 115 |
| NEPTUNE      | 345  | 70754      |                      | NEPTUNE 345                                     |
| NEPTUNE_B1   | 0.48 | 70756      | 63731                | NEPTUNE BESS                                    |
| NEPTUNE_S1   | 0.66 | 70758      | 63731                | NEPTUNE PV                                      |
| NEPTUN_S1_1  | 34.5 | 70757      |                      | NEPTUNE 34.5                                    |
| NEPTUN_SB1   | 34.5 | 70755      |                      | NEPTUNE 34.5                                    |
| NEW_CASTLE   | 69   | 70296      |                      | NEWCASTLE 69                                    |
| NIWOT        | 230  | 70297      |                      | NIWOT 230                                       |
| NORTH_PS     | 115  | 70298      |                      | NORTH PSCo 115                                  |
| NREL         | 115  | 70170      |                      | NATIONAL RENEWABLE ENERGY<br>LABORATORY 115     |
| OIL_SHALE    | 69   | 70302      |                      | OIL SHALE 69                                    |
| ALAMOSA_TP   | 69   | 70186      |                      | ROMEO TAP (OLD #16) 69                          |
| ATER_TAP     | 69   | 70511      |                      | OLD #40 1/2 TAP 69                              |
| ORCHARD      | 230  | 70313      |                      | ORCHARD 230                                     |
| OTERO_TP     | 115  | 70304      |                      | OTERO TAP 115                                   |
| OXCART       | 69   | 70600      |                      | OXCART 69                                       |
| P.VALLEY     | 115  | 70307      |                      | PLATTE VALLEY 115                               |
| PALMER_LK    | 115  | 70308      |                      | PALMER 115                                      |
| PARACHUTE    | 230  | 70309      |                      | PARACHUTE 230                                   |
| PAWNEE       | 345  | 70598      |                      | PAWNEE 345                                      |
| PAWNEE       | 22   | 70310      | 6248                 | PAWNEE UNIT #1 22 (PSCo)                        |
| PAWNEE       | 230  | 70311      |                      | PAWNEE 230                                      |
| PAWNEE_T2    | 13.8 | 71998      |                      | PAWNEE 13.8 (SVD)                               |
| PAWNEE_T3    | 13.8 | 71999      |                      | PAWNEE 13.8 (SVD)                               |
| PEETZ        | 115  | 73150      |                      | PEETZ 115                                       |
| PICADILLY    | 230  | 70530      |                      | PICADILLY 230                                   |
| PLAINS_NUG1  | 230  | 70431      |                      | PLAINS END 230 BUS #1                           |
| PLAINS_NUG2  | 230  | 70433      |                      | PLAINS END 230 BUS #2                           |
| PLAINVW_TP   | 115  | 70300      |                      | PLAINVIEW TAP 115                               |
| PLNENDG1_1   | 13.8 | 70580      | 55650                | PG&E PLAINS END NUG 13.8                        |
| PLNENDG1_2   | 13.8 | 70587      | 55650                | PG&E PLAINS END NUG 13.8                        |
| PLNENDG2_1   | 13.8 | 70585      | 56516                | PG&E PLAINS END NUG 13.8                        |
| PLNENDG2_2   | 13.8 | 70586      | 56516                | PG&E PLAINS END NUG 13.8                        |
| PLAINS_END   | 230  | 70570      |                      | PG&E PLAINS END SW. STATION 230.0               |
| PONCHA       | 13.8 | 71994      |                      | PONCHA SVD 13.8                                 |
| PONCHA       | 69   | 70326      |                      | PONCHA 69                                       |
| PONCHA_E     | 115  | 70327      |                      | PONCHA EAST 115 BUS                             |
| PONCHA_W     | 115  | 77642      |                      | PONCHA WEST 115 BUS                             |

| NAME      | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                                                                |
|-----------|------|------------|----------------------|----------------------------------------------------------------------------|
| PONCHA_PS | 230  | 70393      |                      | PONCHA 230 PSCO                                                            |
| PORTAL    | 115  | 70328      |                      | PORTAL 115                                                                 |
| POWHATON  | 230  | 70532      |                      | POWHATON 230                                                               |
| PRAIRIE_1 | 230  | 70331      |                      | PRAIRIE 230 BUS#1                                                          |
| PRAIRIE_3 | 230  | 70323      |                      | PRAIRIE 230 BUS#3                                                          |
| PRONGHORN | 345  | 70628      |                      | RUSH CREEK 1                                                               |
| PTARMGN   | 230  | 70057      |                      | PTARMIGAN 230                                                              |
| PTZLOGN   | 230  | 70711      |                      | PEETZ LOGAN 230 (2007)                                                     |
| PTZLOGN1  | 34.5 | 70710      | 56563                | PEETZ LOGAN UNIT #1                                                        |
| PTZLOGN2  | 34.5 | 70712      | 56563                | PEETZ LOGAN UNIT #2                                                        |
| PTZLOGN3  | 34.5 | 70713      | 56563                | PEETZ LOGAN UNIT #3                                                        |
| PTZLOGN4  | 34.5 | 70714      | 56563                | PEETZ LOGAN UNIT #4                                                        |
| QF_B4-4T  | 13.8 | 70499      | 10682                | QF BRUSH 4 13.8 BUS (Colo Energy Mgmnt<br>LLC – Brush IV, UNITS GT4 & GT5) |
| QF_B4D4T  | 12.5 | 70556      | 10682                | QF BRUSH 4D 12.5 BUS (Colo Energy Mgmnt<br>LLC – Brush IV D, UNIT ST4)     |
| QF_BCP2T  | 13.8 | 70498      | 10682                | QF BRUSH COGENERATION PARTNERS 13.8<br>UNITS ST2 & GT3                     |
| QF_CPP1T  | 13.8 | 70500      | 10682                | QF COLORADO POWER PARTNERS 13.8 BUS<br>(UNITS GT1 & GT2)                   |
| QF_CPP3T  | 13.8 | 70501      | 10682                | QF COLORADO POWER PARTNERS 13.8 BUS<br>(UNIT ST1)                          |
| QUAKER1   | 115  | 70340      |                      | QUAKER 115 BUS #1                                                          |
| QUAKER_2  | 115  | 70341      |                      | QUAKER 115 BUS #2                                                          |
| QUAKER_TP | 115  | 70342      |                      | QUAKER TAP 115                                                             |
| QUINCY    | 230  | 70343      |                      | QUINCY 230                                                                 |
| RALSTON1  | 115  | 70345      |                      | RALSTON 115 BUS #1                                                         |
| RALSTON2  | 115  | 70346      |                      | RALSTON 115 BUS #2                                                         |
| RAY_LEWI  | 115  | 70312      |                      | RAY LEWIS 115 (TSGT SUBSTATION)                                            |
| RDGCREST  | 34.5 | 70723      | 55741                | RIDGE CREST 115 UNIT #1                                                    |
| RDGCREST  | 115  | 70722      |                      | RIDGE CREST 115                                                            |
| ROMEO_TAP | 69   | 70552      |                      | TAP FOR SLVREC & TSGT WAVERLY 69                                           |
| RIDGE_1   | 115  | 70354      |                      | RIDGE 115 BUS #1                                                           |
| RIDGE_2   | 115  | 70226      |                      | RIDGE 115 BUS #2                                                           |
| RIDGE_3   | 115  | 70227      |                      | RIDGE 115 BUS #3                                                           |
| RIDGE     | 230  | 70355      |                      | RIDGE 230                                                                  |
| RIFLE_UTE | 69   | 70359      |                      | RIFLE UTE 69                                                               |
| RIFLE_UTE | 138  | 79056      |                      | RIFLE UTE 138                                                              |
| RIFLE_UTE | 13.8 | 71988      |                      | RIFLE UTE 13.8 SVD                                                         |
| RIFLE_UTE | 230  | 79057      |                      | RIFLE UTE 230                                                              |
| RIFLE_UTE | 345  | 79058      |                      | RIFLE UTE 345                                                              |
| RIFLE_PS  | 230  | 70358      |                      | RIFLE PSCo 230                                                             |
| RIOGRAND  | 69   | 70360      |                      | RIO GRANDE 69                                                              |
| RIOGRD_TP | 69   | 70361      |                      | RIO GRANDE TAP 69                                                          |
| RIVERDALE | 230  | 70362      |                      | RIVERDALE 230                                                              |
| RMEC      | 230  | 70590      |                      | ROCKY MOUNTAIN ENERGY CENTER 230                                           |
| RMEC1     | 15   | 70588      | 55835                | RMEC UNIT #1 15                                                            |
| RMEC2     | 15   | 70589      | 55835                | RMEC UNIT #2 15                                                            |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                   |
|--------------|------|------------|----------------------|-------------------------------|
| RMEC3        | 23   | 70591      | 55835                | RMEC UNIT #3 23               |
| ROARNGFK     | 69   | 70363      |                      | ROARING FORK 69               |
| ROBINSON_RK  | 115  | 70364      |                      | ROBINSON RACK 115             |
| ROMEO        | 69   | 70367      |                      | ROMEO 69                      |
| ROSEDALE     | 115  | 70368      |                      | ROSEDALE 115                  |
| RUSHCK1_W1   | 0.69 | 70767      | 60619                | RUSH CREEK WIND UNIT 1        |
| RUSHCK1_W1_1 | 34.5 | 70766      |                      | RUSH CREEK WIND UNIT 1 34.5   |
| RUSHCK1_W1_2 | 34.5 | 70765      |                      | RUSH CREEK WIND UNIT 1 34.5   |
| RUSHCK1_W1W2 | 345  | 70764      |                      | RUSH CREEK WIND UNIT 1+3 345  |
| RUSHCK1_W2   | 0.69 | 70770      | 60619                | RUSH CREEK WIND UNIT 3        |
| RUSHCK1_W2_1 | 34.5 | 70769      |                      | RUSH CREEK WIND UNIT 3 34.5   |
| RUSHCK1_W2_2 | 34.5 | 70768      |                      | RUSH CREEK WIND UNIT 3 34.5   |
| RUSHCK2_W3   | 0.69 | 70771      | 60619                | RUSH CREEK WIND UNIT 2        |
| RUSHCK2_W3_1 | 34.5 | 70772      |                      | RUSH CREEK WIND UNIT 2 34.5   |
| RUSHCK2_W3_2 | 34.5 | 70773      |                      | RUSH CREEK WIND UNIT 2 34.5   |
| RUSSELL      | 230  | 70369      |                      | RUSSELL 230                   |
| SAGUACHE     | 69   | 70506      |                      | SAGUACHE 69                   |
| SANDOWN      | 115  | 70377      |                      | SANDOWN 115                   |
| SANLSVLY     | 69   | 70376      |                      | SAN LUIS VALLEY 69            |
| SANLSVLY     | 115  | 70374      |                      | SAN LUIS VALLEY 115           |
| SANLSVLY     | 230  | 70375      |                      | SAN LUIS VALLEY 230           |
| SANTA_FE     | 230  | 70527      |                      | SANTA FE 230                  |
| SARGENT      | 69   | 70380      |                      | SARGENT 69                    |
| SARGENT      | 115  | 70379      |                      | SARGENT 115                   |
| SEMPER       | 115  | 70382      |                      | SEMPER 115                    |
| SHERIDAN     | 115  | 70384      |                      | SHERIDAN 115                  |
| SHORTGRASS   | 345  | 70630      |                      | SHORTGRASS SWITCHING STATION  |
| SHOSHA&B     | 4    | 70385      | 476                  | SHOSHONE UNITS A & B 4 (PSCo) |
| SHOSHONE     | 69   | 70386      |                      | SHOSHONE 69                   |
| SHOSHONE     | 115  | 70387      |                      | SHOSHONE 115                  |
| SILT_USBR    | 69   | 70388      |                      | SILT USBR 69                  |
| SILVSADL     | 230  | 70609      |                      | SILVER SADDLE 230             |
| SIMMS        | 230  | 70543      |                      | SIMMS 230                     |
| SKYRANCH     | 230  | 70392      |                      | SKYRANCH 230                  |
| SMELTER      | 115  | 70394      |                      | SMELTER 115                   |
| SMOKY_HL_N   | 115  | 70395      |                      | SMOKY HILL NORTH 115 BUS      |
| SMOKY_HILL_S | 115  | 70125      |                      | SMOKY HILL SOUTH 115 BUS      |
| SMOKY_HL     | 230  | 70396      |                      | SMOKY HILL 230                |
| SMOKY_HL     | 345  | 70599      |                      | SMOKY HILL 345                |
| SMOK_R1      | 13.8 | 71990      |                      | SMOKY HILL 13.8 REACTOR 1     |
| SMOK_R2      | 13.8 | 71991      |                      | SMOKY HILL 13.8 REACTOR 2     |
| SNOWMASS     | 115  | 70542      |                      | SNOWMASS 115                  |
| SODA_LAKES   | 115  | 70400      |                      | SODA LAKES 115                |
| SODA_LAKES   | 230  | 70018      |                      | SODA LAKE 230                 |
| SOUTH_TAP    | 115  | 70401      |                      | SOUTH 115 BUS #1              |
| SOUTH        | 115  | 70402      |                      | SOUTH 115 BUS #2              |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                                     |
|--------------|------|------------|----------------------|-------------------------------------------------|
| SPINDLE      | 230  | 70592      |                      | SPINDLE HILL 230                                |
| SPINDLE_NUG  | 230  | 70468      |                      | SPINDLE NUG 230                                 |
| SPNDLE1      | 18   | 70593      | 56445                | SPINDLE HILL UNIT #1                            |
| SPNDLE2      | 18   | 70594      | 56445                | SPINDLE HILL UNIT #2                            |
| SPNGCAN1_230 | 230  | 70718      |                      | SPRING CANYON 1 230                             |
| SPRNGCAN     | 230  | 73579      |                      | SPRING CANYON 1 230                             |
| SPRG_CN1_2   | 34.5 | 70720      |                      | SPRING CANYON 1 34.5                            |
| SPRG_CN1_3   | 34.5 | 70719      |                      | SPRING CANYON 1 34.5                            |
| SPRNGCAN1_W1 | 0.57 | 70721      | 56320                | SPRING CANYON 34.5 WIND FARM                    |
| SPRG_CN2_2   | 34.5 | 70716      |                      | SPRING CANYON 2 34.5                            |
| SPRG_CN2_3   | 34.5 | 70717      |                      | SPRING CANYON 2 34.5                            |
| SPRNGCAN2_W2 | 0.69 | 70715      | 58769                | SPRING CANYON 34.5 WIND FARM                    |
| SPRUCE       | 230  | 70528      |                      | SPRUCE 230                                      |
| SPRUCE1      | 18   | 70562      | 55645                | SPRUCE UNIT #1 (Blue Spruce Energy Center PSCo) |
| SPRUCE2      | 18   | 70563      | 55645                | SPRUCE UNIT #2 (Blue Spruce Energy Center PSCo) |
| ST.VR_2      | 18   | 70406      | 6112                 | FORT ST.VRAIN 2 18 (PSCo)                       |
| ST.VR_3      | 18   | 70407      | 6112                 | FORT ST.VRAIN 3 18 (PSCo)                       |
| ST.VR_4      | 18   | 70408      | 6112                 | FORT ST.VRAIN 4 18 (PSCo)                       |
| ST.VR_5      | 18   | 70950      | 6112                 | FORT ST. VRAIN 5 18 (PSCo)                      |
| ST.VR_6      | 18   | 70951      | 6112                 | FORT ST. VRAIN 6 18 (PSCo)                      |
| ST.VRAIN     | 22   | 70409      | 6112                 | FORT ST.VRAIN 22 (PSCo)                         |
| FT_ST_VRAIN  | 230  | 70410      |                      | FORT ST.VRAIN 230                               |
| STEAMBT      | 230  | 79065      |                      | STEAMBOAT 230                                   |
| STKGULCH     | 230  | 70299      |                      | STARKEY GULCH 230                               |
| SULLIVAN_1   | 230  | 70417      |                      | SULLIVAN 230 BUS #1                             |
| SULLIVAN_2   | 230  | 70365      |                      | SULLIVAN 230 BUS #2                             |
| SULPHUR      | 115  | 70523      |                      | SULPHUR 115                                     |
| SULPHUR      | 230  | 70524      |                      | SULPHUR 230                                     |
| SUMMIT1      | 115  | 70418      |                      | SUMMIT 115 BUS #1                               |
| SUMMIT2      | 115  | 70420      |                      | SUMMIT 115 BUS #2                               |
| SUMTAP2      | 115  | 70421      |                      | SUMMIT 115 BUS #2 TAP                           |
| SUNCOR_AULT  | 44   | 70803      |                      | SUNCOR_AULT 44                                  |
| SUN_MTN      | 230  | 70856      |                      | SUN MOUNTAIN 230                                |
| SUNMTN_S1    | 0.63 | 70859      | 65032                | SUN MOUNTAIN PV                                 |
| SUNMTN_S1_1  | 34.5 | 70858      |                      | SUN MOUNTAIN 34.5                               |
| SUNMTN_S1_2  | 34.5 | 70857      |                      | SUN MOUNTAIN 34.5                               |
| SUNPOWER     | 34.5 | 70935      | 60008                | SUNPOWER SOLAR 34.5                             |
| BOULDER_CN1  | 115  | 70423      |                      | SUNSHINE 115                                    |
| SUNSHINE     | 115  | 70424      |                      | SUNSHINE TAP 115                                |
| SURREY_RG    | 230  | 70284      |                      | SURREY RIDGE 230 (PSCo)                         |
| TARRYALL     | 115  | 70426      |                      | TARRYALL 115                                    |
| TARRYALL     | 230  | 70427      |                      | TARRYALL 230                                    |
| TECH_CENTER  | 230  | 70428      |                      | TECH CENTR 230                                  |
| THNDWLF_B1   | 0.48 | 70761      | 63776                | THUNDERWOLF BESS                                |
| THNDWLF_S1   | 0.66 | 70763      | 63776                | THUNDERWOLF PV                                  |

| NAME         | KV   | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION                                |
|--------------|------|------------|----------------------|--------------------------------------------|
| THNDWLF_S1_1 | 34.5 | 70762      |                      | THUNDERWOLF 34.5                           |
| THNDWLF_SB1  | 34.5 | 70760      |                      | THUNDERWOLF 34.5                           |
| THORNTON     | 115  | 70099      |                      | THORNTON 115                               |
| THUNDERWOLF  | 230  | 70759      |                      | THUNDERWOLF 230                            |
| TITAN_S1     | 0.63 | 70616      | 61811                | TITAN SOLAR (Unit S1)                      |
| TITAN13.8    | 13.8 | 70619      |                      | TITAN SOLAR 13.8                           |
| TITAN230     | 230  | 70618      |                      | TITAN SOLAR 230                            |
| TITAN34.5    | 34.5 | 70620      |                      | TITAN SOALR 34.5                           |
| TITANS1      | 34.5 | 70617      |                      | TITAN SOLAR 34.5                           |
| TOLLGATE     | 230  | 70491      |                      | TOLLGATE 230                               |
| TOWER        | 230  | 70432      |                      | TOWER 230                                  |
| TUNDRA       | 345  | 70653      |                      | TUNDRA 345                                 |
| TBI_GEN      | 0.58 | 70704      | 56460                | TWIN BUTTES I WIND COLLECTOR               |
| TWNBT1_1     | 34.5 | 70706      |                      | TWIN BUTTES I 34.5 BUS #1                  |
| TWNBT1_2     | 34.5 | 70703      |                      | TWIN BUTTES I 34.5 BUS #2                  |
| TWNBUTTE     | 230  | 70705      |                      | TWIN BUTTES I 230                          |
| TWNLAKES     | 115  | 70434      |                      | TWIN LAKES 115                             |
| TWN_LAK_TP   | 115  | 70435      |                      | TWIN LAKES TAP 115                         |
| UINTAH       | 13.8 | 70437      |                      | UINTAH 13.8 (A73)                          |
| UINTAH       | 69   | 70436      |                      | UINTAH 69                                  |
| UINTAH       | 230  | 70438      |                      | UINTAH 230                                 |
| UNA_ORCH     | 69   | 70109      |                      | UNA ORCHARD 69                             |
| UNIVERS1     | 115  | 70441      |                      | UNIVERSITY 115 BUS #1                      |
| VAIL         | 115  | 79066      |                      | VAIL 115.0                                 |
| VALMNT7      | 13.8 | 70557      | 55207                | VALMON UNIT #7 13.8 (Southeast Generation) |
| VALMNT8      | 13.8 | 70558      | 55207                | VALMON UNIT #8 13.8 (Southeast Generation) |
| VALMONT_1    | 115  | 70444      |                      | VALMONT 115 BUS #1                         |
| VALMONT_2    | 115  | 70440      |                      | VALMONT 115 BUS #2                         |
| VALMONT      | 230  | 70447      |                      | VALMONT 230                                |
| VALMNT6      | 13.8 | 70448      | 477                  | VALMONT UNIT #6 13.8 (PSCo)                |
| VASQUEZ      | 115  | 70450      |                      | VASQUEZ 115                                |
| VILLA_GROVE  | 69   | 70508      |                      | VILLA 69                                   |
| VINELAND     | 69   | 70454      |                      | VINELAND 69                                |
| WASHINGTON   | 230  | 70461      |                      | WASHINGTON 230                             |
| WATERTN_TP   | 115  | 70483      |                      | WATERTON TAP 1 115                         |
| WATERTON     | 13.8 | 71995      |                      | WATERTON SVD 13.8                          |
| WATERTON     | 115  | 70463      |                      | WATERTON 115                               |
| WATERTON     | 230  | 70464      |                      | WATERTON 230                               |
| WATERTON     | 345  | 70466      |                      | WATERTON 345                               |
| WATERTON_DCP | 230  | 70959      |                      | WATERTON DISTRIBUTION 230                  |
| WHEELER_PS   | 230  | 70356      |                      | WHEELER PSCo 230                           |
| WELD_PS      | 13.8 | 71992      |                      | WELD 13.8 SVD                              |
| WELD_PS      | 115  | 70470      |                      | WELD PSCo 115                              |
| WELD_PS      | 230  | 70471      |                      | WELD PSCo 230                              |
| WEST_PS      | 230  | 70480      |                      | WEST PSCo 230                              |
| WINDSOR      | 230  | 70474      |                      | WINDSOR 230                                |

| NAME        | KV  | BUS-<br>NO | EIA Facility<br>Code | DESCRIPTION        |
|-------------|-----|------------|----------------------|--------------------|
| WOLCOTT_1   | 115 | 79068      |                      | WOLCOTT 115 BUS #1 |
| WOLCOTT_2   | 115 | 77643      |                      | WOLCOTT 115 BUS #2 |
| WOLCOTT     | 230 | 79069      |                      | WOLCOTT 230        |
| WOODLAND_PK | 115 | 70476      |                      | WOODLAND PARK 115  |

# Introduction

| 1. | 1. Title:                 |            | Transmission System Planning Performance                                                                                                                                                                                    |  |  |
|----|---------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2. | 2. Number:                |            | TPL-001-WECC-CRT-4                                                                                                                                                                                                          |  |  |
| 3. | Purp                      | ose:       | To facilitate coordinated near-term and long-term transmission planning within<br>the Western Interconnection, and to facilitate the exchange of the associated<br>planning information for normal and abnormal conditions. |  |  |
|    |                           |            | This document applies to all transmission planning studies conducted within the Western Interconnection.                                                                                                                    |  |  |
| 4. | 4. Applicability:         |            |                                                                                                                                                                                                                             |  |  |
|    | 4.1. Functional Entities: |            |                                                                                                                                                                                                                             |  |  |
|    |                           | 4.1.1.     | Planning Coordinator                                                                                                                                                                                                        |  |  |
|    |                           | 4.1.2.     | Transmission Planner                                                                                                                                                                                                        |  |  |
|    | 4.2.                      | Facilities | 5                                                                                                                                                                                                                           |  |  |
|    |                           | 4.2.1.     | This document applies to Bulk Electric System (BES) Facilities.                                                                                                                                                             |  |  |
|    |                           | 4.2.2.     | The following buses are specifically <i>excluded</i> from this WECC Criterion:                                                                                                                                              |  |  |
|    |                           |            | <b>4.2.2.1.</b> Non-BES buses,                                                                                                                                                                                              |  |  |
|    |                           |            | <b>4.2.2.2.</b> Line side series capacitor buses,                                                                                                                                                                           |  |  |
|    |                           |            | <b>4.2.2.3.</b> Line side series reactor buses,                                                                                                                                                                             |  |  |
|    |                           |            | <b>4.2.2.4.</b> Dedicated shunt capacitor buses,                                                                                                                                                                            |  |  |
|    |                           |            | <b>4.2.2.5.</b> Dedicated shunt reactor buses,                                                                                                                                                                              |  |  |
|    |                           |            | <b>4.2.2.6.</b> Metering buses, fictitious buses, or other buses that model point of interconnection solely for measuring electrical quantities; and                                                                        |  |  |
|    |                           |            | <b>4.2.2.7.</b> Other buses specifically excluded by each Planning Coordinator or Transmission Planner internal to its system.                                                                                              |  |  |
| 5. | Effeo                     | ctive Date | e: July 1, 2023                                                                                                                                                                                                             |  |  |

#### **Requirements and Measures**

- **WR1.** Each Transmission Planner and Planning Coordinator shall use the following *default* base planning criteria:
  - **1.1.** Steady-state voltages at all applicable Bulk-Electric System (BES) buses shall stay within each of the following limits:
    - **1.1.1.** 95 percent to 105 percent of nominal<sup>1</sup> for P0<sup>2</sup> event (system normal precontingency event powerflow).
    - **1.1.2.** 90 percent to 110 percent of nominal for P1-P7 events (post-contingency event powerflow).
  - **1.2.** Post-Contingency steady-state voltage deviation at each applicable BES bus serving load shall not exceed 8 percent for P1 events.
  - **1.3.** Following fault clearing, the voltage shall recover to 80 percent of the precontingency voltage within 20 seconds of the initiating event for all P1 through P7 events, for each applicable BES bus serving load. (See Rationale regarding BES bus serving load.)
  - **1.4.** Following fault clearing and voltage recovery above 80 percent, voltage at each applicable BES bus serving load shall neither dip below 70 percent of precontingency voltage for more than 30 cycles nor remain below 80 percent of precontingency voltage for more than two seconds, for all P1 through P7 Single-Line to Ground fault events.
  - **1.5.** For Contingencies without a fault (P2.1 category event), voltage dips at each applicable BES bus serving load shall neither dip below 70 percent of precontingency voltage for more than 30 cycles nor remain below 80 percent of precontingency voltage for more than two seconds.
  - **1.6.** All oscillations that do not show positive damping within 30 seconds after the start of the studied event shall be deemed unstable.
  - **WM1.** Each Transmission Planner and Planning Coordinator will have evidence that it used the base criteria in its planning assessment specified in Requirement WR1.

<sup>&</sup>lt;sup>1</sup> Refer to the Rationale section for use of the term "nominal."

<sup>&</sup>lt;sup>2</sup> P0 through P7 refers to the categories of contingencies identified in Table 1 of NERC Standard TPL-001-X, Transmission System Planning Performance Requirements, or its successor.

- **WR2.** Each Transmission Planner and Planning Coordinator shall use the following *default* criteria to identify the potential for Cascading or uncontrolled islanding.
  - When a post contingency analysis results in steady-state facility loading that is either more than a known BES facility trip setting, or exceeds 125 percent of the highest seasonal facility rating for the BES facility studied. If the trip setting is known to be different than the 125 percent threshold, the known setting should be used.
  - When either unrestrained successive load loss occurs, or unrestrained successive generation loss occurs.
  - **WM2.** Each Transmission Planner and Planning Coordinator will have evidence that it used the indicators of Requirement WR2 to identify the potential for Cascading or uncontrolled islanding.
- **WR3.** Each Transmission Planner and Planning Coordinator shall use the following *default* criteria when identifying voltage stability:
  - **3.1.** For transfer paths, all P0-P1 events shall demonstrate a positive reactive power margin at a minimum of 105 percent of transfer path flow.
  - **3.2.** For transfer paths, all P2-P7 events shall demonstrate a positive reactive power margin at a minimum of 102.5 percent of transfer path flow.
  - **3.3.** For load areas, all P0-P1 events shall demonstrate a positive reactive power margin at a minimum of 105 percent of forecasted peak load.
  - **3.4.** For load areas, all P2-P7 events shall demonstrate a positive reactive power margin at a minimum of 102.5 percent of forecasted peak load.
  - **WM3.** Each Transmission Planner and Planning Coordinator will have evidence that it used the minimum criteria identified in Requirement WR3 to identify voltage stability.
- **WR4.** Each Transmission Planner and Planning Coordinator that uses planning criteria *different than the default* planning criteria in WR1, WR2, and WR3 shall:
  - **4.1** Document the different criteria to include each of the following:
    - **4.1.1** A narrative explaining why the different criteria was used.
    - **4.1.2** A narrative explaining that the use of the different criteria will not result in violations of equipment ratings, instability, uncontrolled islanding, or Cascading on its own and adjacent systems.
  - **4.2** Notify adjacent Transmission Planners and Planning Coordinators that criteria different from WR1 was used.

- **4.3** Make the different criteria available within 30 days of a request.
- **WM4.** Each Transmission Planner and Planning Coordinator that uses planning criteria different than the default base planning criteria in WR1, WR2, and WR3 will have evidence documenting the different criteria, a narrative explaining why the different criteria was used, and evidence of public notice and availability of the criteria, as required in WR4.

# **Version History**

| Version | Date               | Action                                                                                          | Change Tracking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|--------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | March 6, 2008      | WECC Planning<br>Coordination Committee<br>(PCC) approved TPL-<br>(001 thru 004)-WECC-1-<br>CR. | Reliability Subcommittee translates existing WECC components<br>of NERC/WECC Planning Standards into a CRT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1       | April 16, 2008     | WECC Board of Directors<br>(Board) approved                                                     | No substantive changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2       | October 13, 2011   | PCC approves                                                                                    | Clarifies "corridor"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2       | December 1, 2011   | Board approved                                                                                  | No substantive change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2       | September 5, 2012  | Board changed designation                                                                       | Approved a nomenclature change from "CRT" to "RBP"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.1     | August 6, 2013     | Errata                                                                                          | WM2 Measure moved to WM3. WM3 Measure moved to WM4.<br>WM4 Measure moved to WM2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.1     | December 5, 2013   | Board approved                                                                                  | Developed as WECC-0100, on October 8, 2013, the Ballot Pool<br>retired WR1, WR2, WR4 and WR5 of TPL-(012 through 014)-<br>WECC-RBP-2 coincident with the October 17, 2015, Effective<br>Date of NERC TPL-001-4, Transmission System Planning<br>Performance requirements. (See 18 CFR Part 40, Docket RM-12-<br>1-000 and RM13-9-000, FERC Order 786, issued October 17,<br>2013.)<br>Table W-1, WECC Disturbance-Performance Table of Allowable<br>Effects on Other Systems, Table W-1 Notes, Figure W-1, and<br>Footnotes 1-3 were also retired along with their supporting<br>WECC Requirements, WR1, WR2, and WR5.<br>On December 5, 2013, the Board ratified that decision. |
| 2.1     | June 25, 2014      | Board changed<br>designation                                                                    | Changed from regional Business Practice (RBP) to Criterion<br>(CRT). No other changes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.2     | January 14, 2016   | Errata                                                                                          | Retired WECC Requirements WR1, WR2, WR4, and WR5 and their subsets were removed from the document. WR3 was renumbered to WR1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2.3     | September 20, 2016 | Errata                                                                                          | Sub-parts of the 4.2 Facilities section impacted by the retirement<br>of WR1, WR2, WR4 and WR5 of TPL-(012 through 014)-WECC-<br>RBP-2 were removed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3       | September 21, 2016 | Board approved                                                                                  | This document addresses: 1) the substance of its preceding<br>versions, 2) requirements imposed by NERC TPL-001-4,<br>Transmission System Planning Performance Requirements,<br>Requirements R5 and R6, and 3) the substance of Table W-1<br>retired from Version 2.1.<br>The Effective Date was approved as "the later of January 1, 2016,<br>or the Effective Date of TPL-001-4, Transmission System<br>Planning Performance, Requirements R2-R6 and R8, subject to<br>approvals." Because the effective date of the NERC requirements<br>has already been triggered the document was effective<br>immediately on approval by the Board.                                       |
| 3.1     | December 6, 2016   | Errata                                                                                          | The spelling error in Section 4.2.2.6 "quantizies" was corrected to<br>read "quantities." In WM2, the phrase "the criteria was applied"<br>was replaced with "the criterion was applied."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.2     | June 18, 2019      | Errata                                                                                          | Converted to newest template.<br>In Version 3.2: 1) bulleting in 4.2 Facilities was corrected, 2) at 4.2.2.7, "their" was replaced with "its", 3) use of "X%" was changed to "X percent" throughout, 4) use of "are/is allowed" was changed to "can" throughout, 5) WR4, "as long as" was replaced with "if", "in excess" was replaced with "more than", 6)                                                                                                                                                                                                                                                                                                                      |

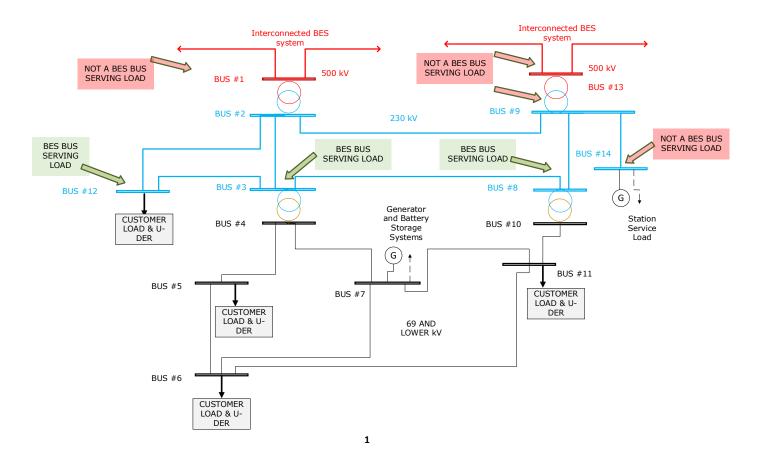
|   |               |                | Version History syntax was corrected, 7) Rationale section,<br>"with the exception of the 500 kilo-volt class" changed to "except<br>the 500 kilo-volt class", Rationale section (last page) "don't" was<br>changed to "do not", 8) Rationale section at WR4, second bullet<br>"Prepared" replaced with "prepared" and at the next to the last<br>paragraph, "time frame" was replaced with "period".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | June 14, 2023 | Board approved | The following changes were made to Version 4. Purpose:<br>"WECC" replaced with "Western Interconnection", planning<br>criteria verbiage was deleted. Facilities: "excluded" was<br>italicized, Requirement WR1: "unless otherwise" qualifier was<br>deleted, WR1.3, a reference was added to the Rationale section,<br>WR1.4, "Single-Line to Ground fault" qualifies the specified<br>event, previous WR2 and WR3 deleted, new WR2 italicizes<br>"default", passive language was deleted, bullet 2 was deleted,<br>new WR3: replaces "minimum" with "default", new WR4:<br>replaces "study" with "planning", replaces "base" with<br>"default", adds a requirement to document and communicate<br>studies. Rationale: WR1 narrative was simplified, WR1.1 and<br>WR1.2 were embellished, WR1.3 and WR1.4 narrative clarifies<br>application to "(FIDVR"), WR2 deletes reference to "Peak<br>Reliability", WR3 clarifies the role of the Transmission Planner<br>and Coordinator, WR4 clarifies distinction between "different"<br>and "default". Footnote 2: "or its successor" was added.<br>Previous footnote 3 deleted as superfluous. Measures and<br>references were updated accordingly. |

WECC receives data used in its analyses from a wide variety of sources. WECC strives to source its data from reliable entities and undertakes reasonable efforts to validate the accuracy of the data used. WECC believes the data contained herein and used in its analyses is accurate and reliable. However, WECC disclaims any and all representations, guarantees, warranties, and liability for the information contained herein and any use thereof. Persons who use and rely on the information contained herein do so at their own risk.

# **Attachments or Other Reference Material**

Though not part of this WECC Criterion, the reader may refer to the following documents for historic background:

- WECC Guide to WECC/NERC Planning Standards 1.D: *Voltage Support and Reactive Power*, prepared by: Reactive Reserve Working Group (RRWG), Under the auspices of Technical Studies Subcommittee (TSS); Approved by TSS, March 30, 2006. Specific emphasis might be focused to Section 2.2 Voltage Stability.
- The applicable Reliability Coordinator's Systems Operating Limits Methodology.
- White Paper WECC-0100 TPL-001-WECC-CRT-3 (CRT) Transmission System Planning Performance Proposed Transient Voltage Response Rationale for CRT Requirements R1.3 and R1.4", dated July 24, 2015, augmented by IEEE Standard 1668.
- Voltage Stability Criteria, Undervoltage Load Shedding Strategy, and Reactive Power Reserve Monitoring Methodology", dated May 1998. The voltage stability criteria recommendation that is the basis for Requirement WR3 was developed under the WECC Reactive Reserve Work Group (RRWG) and documented in the report.


# Rationale

#### **General Application**

Nothing in this document is to be interpreted as allowing third-party actions to impute liability on another. Each applicable entity is responsible for adherence to this WECC Criterion based solely on its own actions.

A BES bus that is serving load is the bus with direct transformation to a non-BES bus (the non-BES bus may be radial or networked) that serves customer load. Station-service and other substation loads are excluded.

For example, this definition meets the intent of having the criteria apply to BES Buses 3, 8 and 12 but not to BES buses 1, 2, 9, 13, and 14. (See below.)



#### **Requirement WR1**

WR1 is designed to state the default base planning criteria the system must meet. WR1 does not prohibit the use of more stringent criteria; rather, it sets the minimum threshold. See WR4.

In the context of Requirement WR1, the word "nominal" carries its common definition and could be, for example, either the base voltage or the operating voltage as established in the entity's Planning Assessment. This means that nominal may have a varying definition or use from one entity to the next.

An entity has the option to specify its nominal voltage different from 525 kV for the 500-kV system.

If an entity does not specify what is nominal, the default use of the term nominal defaults to the kilovolt class that is specified in the WECC Base Case, except the 500-kilovolt class, in which case the default nominal would be specified as 525 kilovolts.

#### Requirement WR1.1 and WR1.2

WR1.1 describes the ceiling and floor of the *magnitude* of voltage allowed at any of the applicable BES buses both under normal operating conditions and after a P1 event (and other P events). WR1.2 describes the *change* in voltage that is allowed between pre/post P1 events. WR1.1 and WR1.2 are independent of one another; one does not guarantee the other thus requiring two sets of criteria.

For instance,

- a) A BES bus at 0.95 p.u. pre-contingency voltage may encounter a contingency that drops the voltage to 0.88 p.u. => would violate WR1.1.2 (<0.9 p.u.) but not WR1.2 (<8% drop).
- b) Another BES bus at 1.05 p.u. pre-contingency encounters a contingency that drops the voltage to 0.92 p.u. => would violate WR1.2 (> 8%) but not WR1.1.2 (>0.9 p.u.)."

Requirement WR1.1.2 refers to the post-automatic equipment adjustment effect prior to manual adjustment.

### **Requirement WR1.2**

In developing WR1.2, the drafting team was aware that eight percent is not the only practical percentage for use. Historically, stakeholders reported successfully using percentages between five and ten whereas others reported being under a regulatory mandate to use eight percent. To accommodate both positions the team selected the eight percent.

By default, only automatic post-contingency actions occurring in the studied timeframe are considered when calculating voltage deviation. This would include, among other things, capacitor or reactor switching. For purposes of WR1.2, automatic generally means a programmed response not manually initiated.

For P2-P7, there is no low or high voltage deviation requirement. It is implied that P2 through P7 events do not require a voltage deviation beyond meeting the requirements in WR1.1.2.

#### Requirement WR1.3 and WR1.4

WR1.3 is intended to identify potential Fault-Induced Delayed Voltage Recovery (FIDVR) events (See Illustration WR1.3). This differentiates WR1.3 from WR1.4.

Illustrations WR1.3 and WR1.4 are illustrative only and are not intended to depict all possible voltage trajectories.

WR1.4 is intended to describe normal voltage recovery and is not designed to address FIDVR (see Illustration WR1.4). There are no voltage performance criteria in WR1.4 for P1 through P7, Three-Phase Fault events.

### **Requirement WR2**

Requirement WR2 is designed to establish screening criteria that when exceeded may require further investigation of instability. The Requirement is not intended to show the presence of Cascading or instability.

The term Cascading in WR2 is the NERC defined term.

In WR2 Bullet 1, the 125 percent threshold should only be used for facilities where the trip setting is not known.<sup>3</sup> If the trip setting is known than known settings should be used. For example, if the known trip setting is 150 percent of the continuous rating, this should take precedence over the 125 percent of the highest rating.

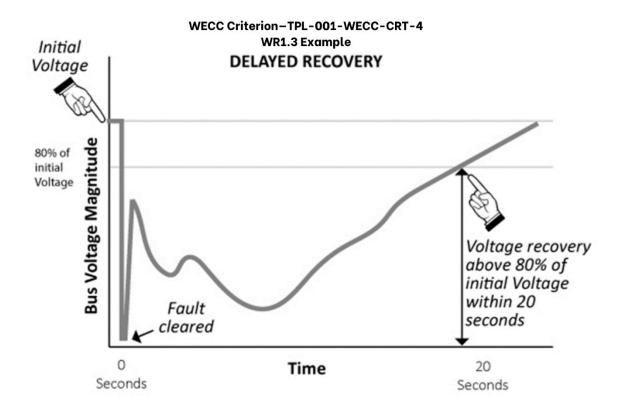
The specific amounts of unrestrained load loss addressed in WR2, Bullet 2 are not specified in this document. Because of the breadth of the possible permutations, the amount should be left to the sound engineering judgment of the planning entity.

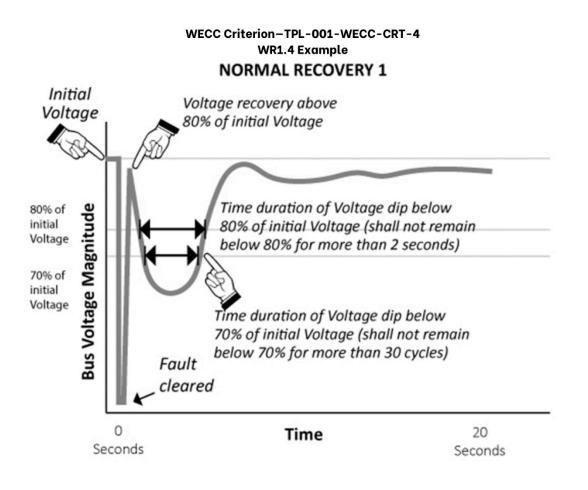
## **Requirement WR3**

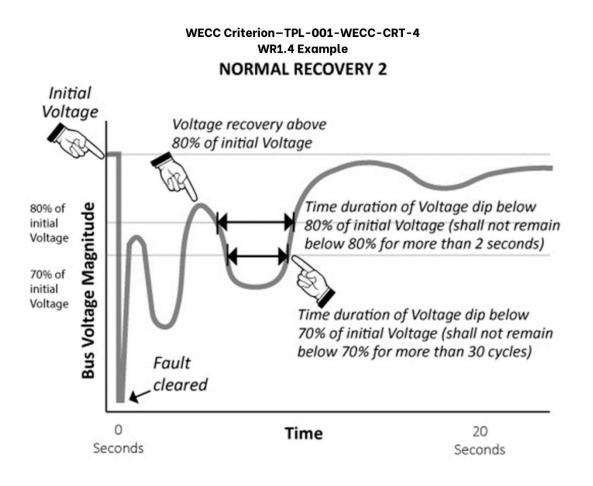
The intent of Requirement WR3 is to ensure the voltage stability of transfer paths as well as the system as a whole during peak load or peak transfer conditions. A margin on real power flow is used as a test for voltage stability. A positive reactive power margin can be demonstrated by a valid steady state power flow solution.

WR3 acknowledges that the Transmission Planner and Planning Coordinator are in the best position to self-determine which transfer paths and load areas are most critical for study.

WR3 does not require studying each transfer path and load area, nor does it supersede NERC transmission system planning performance requirements addressing the criteria or methodology used to identify system instability.


Power flow solutions refer to post contingency conditions where the actions of reactive devices and load tap changers should be studied for the appropriate period being studied.


There is a higher likelihood of occurrence of a P0 to P1 category event; therefore, a higher margin (105%) is used. For P2–P7, there is a lower likelihood of occurrence; therefore, the lower margin (102.5%) is used.


## **Requirement WR4**

WR4 does not change the WR1, WR2, and WR3 defaults; rather, WR4 allows for a different approach without changing the defaults.

<sup>3</sup> The values in WR2 have their historic roots in the Peak Reliability Coordinator Systems Operating Limits Methodology.





